
Preventing Information Loss in Incremental
Model Synchronization by Reusing Elements?

Joel Greenyer1??, Sebastian Pook2, and Jan Rieke1??

1 Software Engineering Group, Heinz Nixdorf Institute
Department of Computer Science

University of Paderborn, 33098 Paderborn, Germany
{jgreen|jrieke}@uni-paderborn.de

2 Heinz Nixdorf Institute
University of Paderborn, 33098 Paderborn, Germany

Sebastian.Pook@hni.uni-paderborn.de

Abstract. The development of complex mechatronic systems requires
the close collaboration of multiple engineering disciplines. Hence, multi-
disciplinary system engineering approaches have been developed. How-
ever, the refinement of discipline-specific aspects of the system, for exam-
ple the implementation of software controllers, still requires discipline-
specific models and tools. During the development, changes in these
discipline-specific models may affect other disciplines’ models. Thus, in-
consistencies are likely to occur, leading to increased development time
and costs if they remain undetected. Bidirectional model synchroniza-
tion techniques aim at automatically resolving such inconsistencies. Ex-
isting synchronization algorithms today, however, fail in this application
scenario, because synchronization steps often unnecessarily destroy and
re-create elements, which damages model parts that are not subject to
the synchronization. In order to solve these issues, we present a novel
synchronization technique based on Triple Graph Grammars with im-
provements regarding the reuse of model elements.

Keywords: Incremental Model Synchronization, Mechatronic System Design,
Triple Graph Grammars (TGG), Information Retainment in the Target

1 Introduction

The development of mechatronic systems, from modern household aids to trans-
portation systems, requires the close collaboration of multiple disciplines, such as
mechanical engineering, electrical engineering, control engineering, and software
engineering. Usually, a discipline-spanning system model is created first. Next,
? This work was developed in the course of the Collaborative Research Center 614 –
Self-optimizing Concepts and Structures in Mechanical Engineering – University of
Paderborn, funded by the Deutsche Forschungsgemeinschaft.

?? supported by the International Graduate School Dynamic Intelligent Systems.

engineers from each discipline develop discipline-specific models in parallel, using
different modeling languages and tools. As changes to these models are likely to
affect other disciplines, avoiding inconsistencies is crucial.

To automatically synchronize the different models used during the develop-
ment, a concept is needed to bidirectionally propagate changes between the dif-
ferent models: if, for instance, the discipline-spanning system model is changed,
these changes must be propagated from this (source) model to the discipline-
specific (target) models. Bidirectional model transformation techniques are a
promising approach for such synchronization scenarios. However, existing syn-
chronization algorithms [4,5,18,8] are not sufficient for such a scenario: When
changes to a source model are propagated, often too many elements of the tar-
get models are unnecessarily deleted and recreated. This severely damages parts
of the target model which are not subject to the transformation, but referenced
the deleted elements. Such synchronization issues arise in many model-based
development scenarios: different models are created for different purposes, and
overlap in the information they contain, e.g., models for specification and models
for testing. We present an improved synchronization algorithm based on Triple
Graph Grammars (TGGs) [14], a rule-based formalism for declaratively specify-
ing relations between models. This algorithm prevents unnecessary deletions by
providing flexible repair operations.

The paper is structured as follows. Sec. 2 describes the development of mecha-
tronic systems and introduces the example. In Sec. 3, we give a short introduc-
tion to TGGs and model synchronization approaches. The main contribution,
our improved synchronization algorithm, is described in detail in Sec. 4. Finally,
we summarize related work in Sec. 5 and conclude the paper in Sec. 6.

2 Development of Mechatronic Systems

Design guidelines for mechatronic systems, like VDI 2206 [17], or development
methods elaborated in the Collaborative Research Center (CRC) 614 “Self-Opti-
mizing Concepts and Structures in Mechanical Engineering” in Paderborn, pro-
pose that experts from all disciplines collaborate in a first development phase,
called the conceptual design. Together they work out the principle solution, a
system model that captures all interdisciplinary concerns. A core part of this in-
terdisciplinary system model is the active structure, which shows how the system
is composed of different system elements, how they are hierarchically structured,
and how they affect each other by flows (e.g., information or energy flows).

The principle solution then serves as a basis for the discipline-specific refine-
ment phase. However, the principle solution rarely captures all interdisciplinary
concerns and, therefore, cross-disciplinary changes may become necessary during
the discipline-specific refinement phase. These changes then have to be propa-
gated among the discipline-specific models. This is realized by first updating
the interdisciplinary system model with the information relevant to other disci-
plines and then propagating these changes to affected discipline-specific models.

RailCab

RailCab to

RailCab

communi-

cation module

configuration

control

hazard

detection

xleader,vleader

d*

convoy state
 detected

 hazards

 xleader,vleader

 dSafe

longitudinal dynamics controller

position

controller

velocity

controller

reference

generator

v*RailCab

position

observer

xRailCab,vRailCab

 F*

xRailCab,vRailCab

x*’

traction unit

SECEMEEE

CE

MEEE
CEMEEE

MEEE

SE

SECE

CE

CE

CE

SE

 F

system
element

join

information
flow

energy flow

SE

SE

SE

v*RailCab

port

SE
relevance
annotation

Fig. 1. Parts of the active structure of the RailCab system

Gausemeier et al. [3] described such a process from a methodological viewpoint,
showing the applicability of model transformation techniques in general.

As an example, we consider the RailCab project3. Its vision is that, in the
future, the schedule-based railway traffic will be replaced by small, autonomous
RailCabs, which transport passengers and goods on demand, being more en-
ergy efficient by dynamically forming convoys. Fig. 1 shows parts of the active
structure of a RailCab. This diagram kind is part of an interdisciplinary specifi-
cation language [2], which we call the Mechatronic Modeling Language (MML).
We consider the refinement in the discipline of software engineering usingMecha-
tronic UML. Mechatronic UML is a modeling language for the development of
distributed, safety-critical real-time systems, especially to model the software ar-
chitecture and the behavior of the system and its components [1]. It allows us to
specify hybrid components, which include both discrete and continuous behavior,
and dynamic reconfigurations of components.

Let us take a closer look at the active structure in Fig 1. The longitudinal
dynamics controller is responsible for controlling the traction unit. The control
strategy for the velocity is reconfigured based on the current convoy state: Usu-
ally, a setpoint value for the speed, v∗

RailCab, is used, calculated by the reference
generator. In convoy mode, the controllers are reconfigured so that instead the
position controller becomes active and the velocity is controlled based on the
distance to the leading RailCab. The basic reconfiguration behavior is described
in the principle solution, but the details are implemented during the discipline-
specific refinement. For details, we refer to Gausemeier et al. [3]. The small rele-
vance annotations at the top of each system element mark which system element
is relevant to which discipline (e.g., “SE” denotes Software Engineering). Thus,
these annotations define discipline-specific views on the active structure.

Inconsistencies may easily arise during the development. Consider the follow-
ing process as an example.
1. The discipline-specific models are generated from the principle solution by

different initial model transformations. Fig. 2 shows how different elements
of the active structure correspond to Mechatronic UML model elements.

3 Neue Bahntechnik Paderborn/RailCab: http://www-nbp.uni-paderborn.de/

RailCab

d*

convoy state

longitudinal dynamics controller

position

controller

velocity

controller

reference

generator

position

observer

xRailCab,vRailCab

 F*x*’

traction unit

SECEMEEE

CE

MEEE

CEMEEE

CE

CE

CE

SE

SE

SE

SE

longitudinal dynamics controller

<<hybrid>>

reference

generator

<<controller>>

position

controller

<<hybrid>>

velocity

controller

xRailCab,

vRailCab

x*’

xleader,

vleader

DS

DS

DS

DS

v*RailCab

d*

v*RailCab

F*

convoy

state

v*RailCab

v*RailCab

deleted in step 3

transformation
in step 1

affected by step 4

<<hybrid>>

Reconfiguration

added in step 2

Fig. 2. Transition from the active structure to a Mechatronic UML component diagram

2. The disciplines’ engineers start refining their models. E.g., the software engi-
neer defines behavior for components; especially he elaborates on the recon-
figuration behavior for the longitudinal dynamics controller. This discipline-
specific information is typically not reflected back to the principle solution.

3. A flaw is identified within the original principle solution: the velocity con-
troller inside the longitudinal dynamics controller receives information about
the current convoy state, but this is unwanted and possibly misleading for
the engineers implementing it. So the principle solution is changed, and this
information flow and its ports are removed.

4. After the only discrete port of the velocity controller has been removed, the
corresponding component in Mechatronic UML must not be a hybrid compo-
nent anymore, but a simple controller component. (Controller components,
in contrast to hybrid components, are not further refined by the software
engineers, but entirely implemented by control engineering. Thus, it is just
a placeholder for controller code.) Therefore, the model synchronization up-
dates the software model and changes the hybrid component to a controller.
The main challenge in step 4 is that the model synchronization has to replace

some parts of the Mechatronic UML model, but in a way that the discipline-
specific information introduced in step 2 is not destroyed or becomes invalid.
Here, the reconfiguration chart developed in step 2 references the hybrid com-
ponent velocity controller. Deleting this hybrid component and recreating it as a
controller component would damage this reconfiguration chart, because the chart
would still reference the deleted hybrid component.

3 Triple Graph Grammars

Bidirectional model transformation techniques are a promising approach for au-
tomatically synchronizing the different models during the development. Here,
we use a concept called Triple Graph Grammars (TGGs) [14]. TGGs are a rule-
based formalism that allows us to specify how corresponding graphs or models

can be produced “in parallel” by linking together two graph grammar rules from
two different graph grammars. More specifically, a TGG rule is formed by insert-
ing a third graph grammar rule to produce the so-called correspondence graph
that links the nodes of the other two graphs. TGGs can be interpreted for dif-
ferent transformation and synchronization scenarios. Before we describe these
scenarios, let us consider the structure of TGG rules.

3.1 Triple Graph Grammar Rules

Fig. 3a illustrates a TGG rule, SystemElementToHybridComponent, which is taken
from a TGG that defines the mapping between MML and Mechatronic UML.

TGG rules are non-deleting graph grammar rules that have a left-hand side
(lhs) and a right-hand side (rhs) graph pattern. The nodes appearing on the
lhs and the rhs are called context nodes, displayed by white boxes. The nodes
appearing on the rhs only are called produced nodes, displayed by green boxes,
labeled by “++”. Accordingly, there are context edges, displayed by black arrows,
and produced edges, displayed by green arrows and “++” labels.

In TGGs, graphs are typed and attributed. When working with models and
meta-models in terms of MOF [11], this means that the host or instance model
contains objects and links that are instances of classes and references of a
given meta-model. Accordingly, the nodes and edges in the rules are typed
over the classes and references in a meta-model. Nodes are labeled in the form
“Name:Type”. For instance, the nodes in the left column of rule SystemElement-
ToHybridComponent are typed by the classes Package and SystemElement from
the MML meta-model. The edge is typed over the reference packagedElement.

The columns of a TGG rule describe model patterns of different meta-models
and are called domains. The left-column production states that when there is a
package in MML, we can add a system element and a link between them. The
right column of the rule represents the graph grammar production for creat-
ing components in packages in Mechatronic UML. In the middle, there is the
production of the correspondence structure between the models.

Our TGG rules further introduce the concept of attribute constraints and
application conditions (depicted by yellow, rounded rectangles in Fig. 3). At-
tribute constraints are attached to nodes and have expressions of the form

cc:CodeContainer

MML Corresp. Mechatronic UML

c:Component:SE2Comp

pm:Package pu:Package:Pack2Pack

packagedElement
packagedElement

++

++
++ ++

++

ct:Controller

stereotype
++

name=se.name

cd:CodeDescriptor

++

opaqueBehavior

++
++

++

name=c.name

se.continuousPorts>0
&& se.discretePorts=0

se.isSERelevant

se:SystemElement

++

++

MML Corresp. Mechatronic UML

se:SystemElement c:Component:SE2Comp

pm:Package pu:Package:Pack2Pack

packagedElement packagedElement++

++ ++ ++
++

h:Hybrid

stereotype

++

name=c.name

se.continuousPorts>0
&& se.discretePorts>0

name=se.name

++
++

++

C
on

te
xt

P
ro

du
ce

d
gr

ap
h

se.isSERelevant

a) b)

Fig. 3. a) SystemElementToHybridComponent, b) SystemElementToController

〈prop〉 = 〈expr〉, where 〈prop〉 is a property of the node’s type class, and 〈expr〉
is an OCL expression that must conform to the type of 〈prop〉. Node names
can be used as variables in the OCL expression. Attribute constraints constrain
the attribute value of an object. E.g., rule SystemElementToHybridComponent
has two constraints that express that the name of the component has to be
equal to the name of the opposite component. A rule application is not valid
if the attributes do not equal the specified values. Application conditions are
OCL expressions over model properties that evaluate to a Boolean value. A rule
application is not valid if an application condition evaluates to false. E.g., the
constraints on the left of the rule SystemElementToHybridComponent restrict the
applicability to cases where there are both continuous and discrete ports at the
system element and where the component is relevant to software engineering.

To express the relation between MML and Mechatronic UML, we defined a
set of TGG rules. Rule SystemElementToHybridComponent defines how system
elements with both discrete and continuous information flow ports correspond
to hybrid components. Rule SystemElementToController (Fig. 3b) relates system
elements without discrete but with continuous ports to controller components.

A TGG may only refer to a subset of the classes defined in the domain meta-
models. Instances of other classes are allowed to occur in the models. We then say
that they are not subject to the transformation. For instance, if reconfiguration
behavior is modeled in Mechatronic UML, it is not subject to the transformation.

3.2 Application Scenarios

We can interpret TGGs for different application scenarios. One scenario, called
forward transformation, is to create one “target” graph corresponding to a given
“source” graph. In this case, a TGG rule is interpreted as follows: First, the
context pattern of the rule is matched to bound model elements, which are
objects and links that were previously matched by another rule application.
Second, the source produced pattern is matched to yet unbound parts in the
source model. If a matching respecting these conditions is found, the produced
target and correspondence patterns are created and bindings are created for the
newly matched and created elements.4 The backward direction works accordingly,
reversing the notion of source and target. We refer to Greenyer and Kindler [6]
for further details on TGGs and the binding semantics.

Our TGG engine interprets attribute constraints (of the form 〈prop〉 =
〈expr〉) as assignments in the target domain. If a TGG rule shall support both
transformations directions, assignments must be specified for both directions.

3.3 Incremental Model Synchronization

In a situation where a triple of corresponding models is given and a change
occurs in one domain model, this change can be propagated by incrementally
4 In the following, we use the term binding when referring to a single node-to-object
or edge-to-link match, and matching for a set of those bindings (i.e., when a whole
pattern is matched to several elements).

updating only the affected parts of the model. Algorithms for this problem have
been described before [5,4,18,8]. In the following, we explain the shortcomings of
existing incremental synchronization approaches.

Giese and Wagner suggest the following approach [5]. When a change occurs
in the source model, the rule application(s) which are violated by the change
(i.e., there is no longer a valid matching of the rule) are revoked. Second, all
rule applications that depend on the revoked rule(s) are also revoked. During
that process, the target model elements created by the revoked rule applications
are destroyed, and the source model elements become unbound. Finally, the
transformation is re-run for the unbound source model elements.

Giese and Hildebrandt present another algorithm [4]. When a change occurs
in the source model, it tries to repair the rule applications that are violated by
the change. For instance, if the change is a move of an element on the source side,
a rule application can be repaired by changing the link from the corresponding
(target-side) element to its old (target-side) parent such that it is now linked to
the new corresponding parent on the target side. These repairs are performed
by pre-generated repair operations that are derived from the rules. Only if such
a repair operation is not possible, the rule application is revoked. Then the
algorithm tries to apply another rule to these unbound source model elements.
However, these repair operations are only able to modify links; whenever it is not
possible to repair a rule application by changing a link, the rule must be revoked
and the target model elements are destroyed. In the following, we present an
example where this approach leads to the unwanted loss of information in the
target model. Our improved algorithm resolves this problem.

4 Improved Synchronization

As the deletion of elements should be prevented if possible, it is reasonable not
to immediately destroy elements when a rule application is revoked. Thus, these
elements are just marked for deletion by our improved synchronization. The
novelty of our algorithm is that it can reuse these removed objects and links
during later rule application by explicitly searching for matches in the set of
elements marked for deletion. Only if such a deletion-marked element cannot be
reused by a new rule application, it will be ultimately destroyed. The problem is
that there may be several ways of how these elements can be reused. A particular
challenge is then to determine the “best” way to reuse these elements.

Next, we present an example and overview the improved synchronization
algorithm. Then we give an extended example with different ways of reusing
elements and we discuss heuristics to determine which reusable pattern may be
best. Finally, we discuss the details of the partially reusable pattern search and
conclude with a runtime evaluation.

4.1 Improved Synchronization Example
We assume that our models are in a consistent state, e.g., after an initial trans-
formation as shown in Fig. 2. In particular, all elements are bound by a TGG

rule application. Then, as described in Sec. 2, the software engineer adds a re-
configuration chart to the Mechatronic UML model. Next, the information flow
convoy state to the system element velocity controller is deleted from the MML
model, and with it its corresponding port (crossed-out in Fig. 4a). The rule ap-

:InformationFlow
name = 'convoy state'
type = discrete

MML Corresp. Mechatronic UML

vc:SystemElement
name = 'velocity controller'
isSERelevant = true

vc:Component
name = 'velocity controller':SE2Comp

:Package :Package:Pack2Pack

packagedElement
packagedElement

:Hybrid

stereotype

:InformationFlowPort
name = 'convoy state'
type = discrete

:InformationFlowPort
name = 'v*RailCab'
type = continuous

ownedPort

ownedPort

:Port
name = 'v*RailCab'
type = continuous

:Port2Port

ownedPort

:Reconfiguration

:Parttype

:Port2Port

:Flow2Conn

:Port
name = 'convoy state'
type = discrete

:Connector
name = 'convoy state'

ownedPort

a) b)

MML Corresp. Mechatronic UML

vc:SystemElement
name = 'velocity controller'
isSERelevant = true

vc:Component
name = 'velocity controller':SE2Comp

:Package :Package:Pack2Pack

packagedElement
packagedElement

:InformationFlowPort
name = 'v*RailCab'
type = continuous

ownedPort

:Port
name = 'v*RailCab'
type = continuous

:Port2Port

ownedPort

type

:Controller

:CodeDescriptor

:Hybridstereotype

:Reconfiguration

:Part

:CodeContainer

Fig. 4. Abstract syntax after rule revocation, a) after deleting a flow and the revocation
of rules, b) after applying the new rule (with reusing elements by repair operations)

plications that previously translated the information flow and the information
flow port are now structurally invalid5. Therefore, these rule applications are
revoked, which means removing all its bindings and marking the correspondence
and target produced objects and links as deleted (denoted by dashed lines in
Fig. 4a). Additionally, the application of SystemElementToHybridComponent that
mapped the velocity controller system element to a hybrid component becomes
invalid because the constraint continuousPorts>0&&discretePorts>0 is vio-
lated, as there is no discrete port any more. So, this rule application has to be
revoked by marking its produced part as deleted, too.

We now try to apply new rules immediately, instead of first revoking de-
pended rule applications. Here, rule SystemElementToController (Fig. 3b) can be
applied. Its context is matched onto the package objects in MML and UML and
the correspondence :Pack2Pack. Updating incrementally in forward direction,
the produced source (MML) pattern (consisting only of se:SystemElement) is
searched. It matches the velocity controller system element, which is now unbound
due to the revocation of SystemElementToHybridComponent. Also the constraints
hold, as they require no discrete port. A normal rule application would simply
create the correspondence and target patterns. Instead, our improved synchro-
nization first searches for a pattern matching in the set of elements marked for
deletion. Two elements in this set can be reused: starting the search from the
velocity controller system element, our algorithm finds and reuses the (deletion-
marked) :SE2Comp correspondence and the velocity controller component.

No other previously deleted element can be reused by this rule. Unfortunately
the matching is not complete yet, as there are no existing objects to match the
5 We refrain from showing these TGG rules, as they simply map one information flow
(resp. one information port) to one connector (resp. one port).

Controller, CodeDescriptor, and CodeContainer nodes of rule SystemElementTo-
Controller. The algorithm uses this partial pattern matching anyway. Now we
can apply the rule as follows. First, remove the “deleted” flag from everything
that has been reused and binding these elements again. Second, because the
match of the TGG rule is not yet complete, additional links and objects are
created as required for this rule. Unfitting links of single-valued references are
moved. This process is called repair operation.

Fig. 4b shows the situation after the rule application. The algorithm reused
the :SE2Comp correspondence and the velocity controller component (shaded in
Fig. 4b). It created new instances of Controller, CodeDescriptor, and CodeCon-
tainer, and set the appropriate links (dashed in Fig. 4b), as no reusable element
could be found for them. The Hybrid stereotype object could not be reused. Thus,
it is ultimately destroyed (crossed-out in Fig. 4b). Also the convoy state port, the
connector and their correspondences are destroyed (not shown in Fig. 4b).

By reusing the velocity controller component, which was previously marked
for deletion, a dangling edge from the model-specific reconfiguration specification
(hatched in Fig. 4a and 4b) is prevented. Additionally, any further model-specific
information that is attached to the component is also preserved. Furthermore, a
deletion and recreation of the component would have rendered the context for
the PortToPort rule invalid. Thus, the old synchronization algorithm would have
to revoke this and possibly further rule application.

4.2 Improved Synchronization Algorithm

In summary, our improved synchronization algorithm works as follows:
1. Iterate over all TGG rule applications in the order they were applied, and if

the application has become invalid due to changes in the source model
a. Remove the bindings of the produced graph, and mark the correspondence

and target produced elements previously bound to this graph as deleted.
b. If the same or other rules are applicable in the forward direction, i.e., the

context and the source produced graph match,
i. search for a pattern of elements marked for deletion that “best”

matches part of the rule’s correspondence/target graph structure
ii. apply the rule by reusing this pattern, creating the remaining corre-

spondence/target pattern, and enforcing attribute value constraints.
Continue checking the next rule application or terminate if all applications
have been checked.

2. Finally, effectively destroy elements that are still marked for deletion.
The concept to “mark for deletion” allows us to remember the elements that

might be reusable. It is the basis for intelligently reusing model elements during
the synchronization, which is the main improvement over previous approaches.

In the example above there was only one possible partially reusable pattern,
but often there are several partial matchings that reuse more or less elements. In
fact, some partial matchings may reuse elements in an unintended way. There-
fore, we first calculate all possible partial matchings, and then choose the most

reasonable. In the following, we present an extended example in which two reuse
possibilities occur. Next, we discuss the implementation details of the partially
reusable pattern search, which computes the different reuse options (step 1b-i).

4.3 Selection of Elements to be Reused

The heuristic for the “best” partial matching is generally to take the partial
matching that reuses most elements. However, also considering existing corre-
spondence information can be vital, as we show in the following example. Let us
assume that we start with a consistent state, as in the previous example. First,
as before, the discrete port and its information flow are deleted from the MML
velocity controller. Second, for some reason the position controller’s relevance flag
for the software engineering discipline is removed. Therefore the application of
rule SystemElementToHybridComponent for the velocity controller and the applica-
tion of rule SystemElementToController for the position controller is revoked. The
result is shown in Fig. 5, with user deletions crossed-out and deletion-marked
elements depicted by dashed lines.

As explained before, rule SystemElementToController is now applicable at
the MML velocity controller. In addition to the partial pattern match described
before (see Fig. 4b), there is a second promising partial match now (marked with√
s in Fig. 5). It is found by the partial pattern matching search starting from

the context :Package object of Mechatronic UML. This partial match reuses the
deleted position controller component, its controller, code descriptor and code
container. However, the existing correspondence node does not fit (marked with
a ~): It points to the MML position controller, but it must be connected to the
MML velocity controller (because the node se:SystemElement is already matched
to the velocity controller). Additionally, the attribute constraint must be repaired,
changing the component’s name to “velocity controller” (also marked with ~).

Although this alternative partial matching reuses more elements than the
partial matching used in Fig. 4b, it is in fact an example where the reuse is un-
intended, because it creates a correspondence between the “wrong” elements. At
first glance, this may not seem to be a problem, because the change propaga-
tion will adapt all links and attribute values in the target model to satisfy the
constraints posed by the TGG. However, there may be elements in the target

MML Corresp. Mechatronic UML

vc:SystemElement
name = 'velocity controller'
isSERelevant = true

vc:Component
name = 'velocity controller':SE2Comp

:Package :Package:Pack2Pack

packagedElement packagedElement

:Controller

:CodeDescriptor

:Hybrid

pc:SystemElement
name = 'position controller'
isSERelevant = true false

pc:Component
name = 'position controller'

:SE2Comp

:InformationFlowPort
name = 'v*RailCab'
type = continuous

ownedPort

ownedPort

:InformationFlow
name = 'convoy state'
type = discrete

:InformationFlowPort
name = 'convoy state'
type = discrete

ownedPort

:CodeContainer

Fig. 5. “Wrong” partial pattern match

model that are not subject to the transformation which reference these reused
elements. A “wrong” reuse means that these elements now reference completely
altered objects that have changed in meaning. Therefore, it is reasonable to favor
such partial matchings where a correspondence node is reused without changing
its correspondence links. In this way, only previously corresponding elements are
reused, typically resulting in the intended reuse of elements.

Note that in terms of the TGG semantics it is not relevant in which way
existing elements are reused (or whether they are reused at all). A particular
reuse of elements may only be more or less harmful to the elements that are
not subject to the transformation. Our synchronization algorithm only produces
triples of models where the elements that are subject to the transformation form
a valid triple model according to the TGG. That is because (a) when a rule
is applied, reused objects and links will be modified so that they fit the rules,
and (b) at the end of a synchronization run, unused objects that are marked for
deletion will be actually destroyed. Therefore, after a successful synchronization,
every rule holds and no remainders of revoked rules exist. Thus, arguing infor-
mally, fundamental TGG transformation properties like termination, correctness
or completeness should be unaffected by our new algorithm. However, a formal
discussion of these properties is outside of the scope of this paper.

4.4 Partial Reusable Pattern Matching Algorithm

In the following, we describe the data structure we use for the partially reusable
pattern search and discuss how the algorithm searches for partial matchings.

All possible partial matchings are computed by creating a tree structure.
The root of this tree is a vertex which represents the matching of the context
and the source produced domain pattern (computed in step 1b). Each edge of
the tree represents a step of the pattern matching which binds a new node.
Each other vertex is labeled with a single node binding (a node-object tuple).
Additionally, it is labeled with its pattern matching depth, which is the depth
in the recursion of a depth-first pattern matching algorithm. Each vertex of the
tree therefore represents a (partial) matching of the rule, recursively defined by
the node binding of the vertex and those of its parent.

The resulting tree reflects the pattern matching search: When traversing the
rule, the algorithm adds a new child vertex for each successful pattern matching
step (i.e., whenever it finds a new candidate object for a node). Thus, a vertex
has more than one child when there are different possibilities to match a node.

Fig. 6 shows a part of the matching tree that is the result of a partial pattern
matching search of rule SystemElementToController (Fig. 3b) in the set of deleted
elements from Fig. 5. As described, the root of this tree contains the matching
of the context and the source produced domain pattern. The different bindings
of this matching are shown in the form “Node:NodeType → Object:ObjectType”,
where Node represent a node from the TGG rule and Object is the matched
object. The algorithm starts a search from every binding in the root. Let us
assume it first tries to match the TGG rule node pu:Package and finds the
not yet bound outgoing edge packagedElement to c:Component (Fig. 3b). The

pm:Package → :Package, :Pack2Pack → :Pack2Pack,
 pu:Package → :Package, se:SystemElement → vc:SystemElement

c:Component → pc:Component

ct:Controller → :Controller

step back to: c:Component
cd:CodeDescriptor→:CodeDescriptor

1

2
1
2

:SE2Comp → :SE2Comp
step back to: c:Component

2
1

c:Component → vc:Component

ct:Controller → ?

cd:CodeDescriptor → ?

1

:SE2Comp → :SE2Comp 2

0

 Repair name constraint

 Repair link to SystemElement

cc:CodeContainer→:CodeContainer 3

step back to: cd:CodeDescriptor 2

 Create new object for node ct:Controller

 Create new object for node cd:CodeDescriptor

cd:CodeContainer → ?
 Create new object for node cc:CodeContainer

matching
depth

(i)

(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)

Fig. 6. Matching tree resulting from searching the produced pattern of SystemElement-
ToController in the set of deleted elements from Fig. 5

algorithm now has two options on how to match this node: Both the objects
position controller and the velocity controller components match. So a new vertex
is created for both (the left one is marked with (i) in Fig. 6), each with depth = 1
(denoted as the circled number in the upper right corner of the vertices in Fig. 6).

The left subtree contains the “wrong” partial matching possibility (see Fig. 5):
The algorithm continues with matching the ct:Controller node to the controller
object and adding a vertex with depth = 2 for it (ii). Then, as there is no un-
bound node connected to the ct:Controller node, the search must be continued at
the previous node, decreasing the depth (iii). Here, the previous node is simply
the node of the parent vertex, c:Component. Next, the cd:CodeDescriptor (iv)
and the cc:CodeContainer (v) is matched. Again, as no unbound node connected
to cc:CodeContainer exists, the algorithm steps back in the pattern matching,
i.e., returns to the previous node, cd:CodeDescriptor (vi). There is also no un-
bound node connected to cd:CodeDescriptor. At this point, the previous node
is not the node of the parent vertex. Therefore, the previous node is identified
using the depth counter: we walk up the tree and select the first vertex v with
v.depth < currentV ertex.depth, which is c:Component (vii).

The :SE2Comp correspondence node matches (viii), but its link to the position
controller system element does not, because there is already a binding for the
node se:SystemElement that binds a different object. So this must be repaired if
this partial matching should be applied, denoted with the ~. Furthermore, the
attribute constraint that ensures the equality of the system element’s and the
component’s name must be enforced by changing the name of the pc:Component
(again marked with a ~ at the first vertex (i) of the left subtree).

The right subtree represents the other partial matching from the previous
example, where the ct:Controller, cd:CodeDescriptor, and ct:CodeContainer nodes
could not be matched. Note that there are no real vertices for these unmatchable
nodes in the tree. They are depicted dashed in Fig. 6 only to illustrate the repair
operations needed to be performed to create a valid rule matching.

In fact, there is a third subtree (not shown in the figure). The search starts at
every node of the root’s matching (remember it contains bindings for all context
and produced source graph nodes). Thus, starting from the se:SystemElement
node, the algorithm would create this third subtree which contains the same
matching as the second subtree, just in opposite direction.

Every vertex of the matching tree represents a possible repair operation.
The number of reused elements is equal to the depth of a vertex in the tree
(not the value of the depth counter), not counting the “step back to” vertices.
Thus, using the root would not reuse deleted elements, but create the whole
produced pattern. Once the tree is computed, it has to be decided which of the
several partial matchings (i.e., which vertex of the tree) should be used. We have
discussed above that a reasonable heuristic is to select the partial matching which
does not damage reusable correspondences and which reuses most elements, i.e.,
will require the least repair operations. In this way, it is likely that only previously
related elements are reused, which is probably the intention of the user.

Further details including the algorithm’s pseudocode can be found in [7].

4.5 Runtime Evaluation

With our improved synchronization, we intend to address the issue of informa-
tion loss during update operations, and focus less on performance improvements.
Some operations of our solution turn out to be relatively time-consuming. Espe-
cially, building a complete search tree is exponential in the number of nodes and
candidate objects (objects marked for deletion), but all techniques that calculate
different matchings resp. repair alternatives will suffer from the general complex-
ity of this problem. To estimate the performance impact, we implemented both
our algorithm and the one by Giese and Wagner [5] in our TGG Interpreter6.
Due to lack of space, we only give a short summary of the runtime evaluation
here. Detailed results can be found in [7].

In summary, our algorithm works best when there are only few altered ele-
ments, because then the number of candidate objects is small. There could even
be performance improvements when a large amount of revocations of dependent
rules is prevented. Overall, the prevention of information loss comes with a per-
formance decrease in most cases. However, in typical editing cases, the maximum
performance drop was only 30% in comparison with the old algorithm.

In our examples, we observed that good partial matchings were often found
early in the partially reusable pattern search. Thus, additional heuristics could
be used to determine the quality of a partial matching already during the search.
When a good-quality matching is found, we could even decide to terminate the
search, possibly long before the complete matching tree is build up. Then we
may miss the intended way of reusing the elements, but we believe that there are
many examples where adequate heuristics could determine the “best” matching
early, improving the overall performance significantly. However, elaborating these
heuristics is planned for future work.
6 http://www.cs.uni-paderborn.de/index.php?id=12842&L=1

5 Related Work

Model synchronization has become an important research topic during the last
years. Several concepts of incremental updates, which are mandatory for pre-
serving model-specific information, have been proposed. However, as discussed
in this paper, simply updating incrementally can still be insufficient. To the best
of our knowledge, there are only few solutions that address these further issues.

As described in Sec. 4, the approach of Giese and Hildebrandt [4] is similar,
but their main focus is performance and not optimizing the reuse of elements.
Their approach is only able to cover cases similar to an element move (which
means essentially repairing edges). It does not allow for more complex scenarios:
either a rule application can be repaired by changing links or attributes value,
or the rule is revoked and all elements are unrecoverably deleted.

Körtgen [10] developed a synchronization tool for the case of a simultaneous
evolution of both models. She defines several kinds of damage types that may
occur and gives abstract repair rules for these cases. At runtime, these general
repair rules are used to derive concrete repair operations for a specific case. The
synchronization itself, however, is a highly user-guided process, even if changes
are propagated in just one direction. Our aim is to avoid unnecessary user inter-
action where that is possible. For ambiguous cases, however, we would also like
to incorporate means for user interaction.

Xiong et al. [18] present a synchronization technique that also allows for the
simultaneous evolution of both models in parallel. Basically, they run a backward
transformation into a new source model, and then use model merging techniques
to create the updated final source model. The same is done in forward direction.
Other approaches (e.g., Jimenez [9]) also rely on model merging. In general,
using model merging techniques in combination with (possibly non-incremental)
transformations is another possibility to solve the issues discussed in this paper:
a simple transformation propagates changes from the source model to a working
copy of the target model. Then the model merger is responsible for merging the
changes in the target model. However, this puts additional requirements on the
model merger: first, it must identify “identical” elements without using unique
IDs, because these IDs change when elements are recreated in a transformation.
Second, discipline-specific information is lost in the working copy of the target
model during a simple transformation, but still contained in the original target
model. The model merger must be aware of this discipline-specific information
in order not to overwrite it unintentionally. As model merging techniques evolve,
it will be interesting to compare such techniques with our solution.

Another approach to the problem is using information on the editing op-
erations that took place on a model. Ráth et al. [13] propose a solution which
does not define the transformation between models any more, but maps between
model manipulation operations. The problem with this approach is that a model
transformation must be described in terms of corresponding editing operations,
which may be a tedious and error-prone task.

Varró et al. [15] describe a graph pattern matching algorithm similar to ours.
They also use a tree structure to store partial matchings. When (in-place) graph

transformation rules are applied, the matching tree is updated to reflect the
changed graph, allowing the pattern matching itself to be incremental.

QVT-Relations [12] has a “check-before-enforce” transformation semantics
which says that a pattern in the target model must be reused when there is
an exact match with the target rule pattern. Nothing is reused if only parts of
the target pattern can be matched. With this semantics, also QVT would delete
and re-create the Mechatronic UML component in the above example. Even if
we would change the semantics of QVT-Relations to allow for a better reuse of
elements, algorithms for this semantics would yet have to be developed. Such an
algorithm could use an approach similar to the one presented in this paper.

As mentioned before, performance was not in focus when developing the new
synchronization. Therefore, it is likely that the heuristics and the search can
still be improved. There exist several approaches for improving the performance
of pattern matching. Varró et al. [16] use model-sensitive search plans that are
selected during runtime. Especially when there are many elements marked for
deletion that can possibly be reused, a dynamically selected search plan could
also help increasing the performance in our case.

6 Conclusion and Future Work

We presented an improved incremental update mechanism that aims at min-
imizing the amount of unnecessarily deleted elements in the target model. In
this way, much of the discipline-specific information that is not covered by the
transformation can be preserved. The method is applicable not only for com-
paratively simple cases, like move operations, but also for more complex cases
which involve alternative rule applications. One advantage of the technique is
that it does not require the repair operations to be specified manually, but is a
general solution and independent of the meta-models and the TGG rules.

The technique cannot prevent every possible inconsistency or loss of informa-
tion. There are several improvements that we plan to investigate in the future.
One extension is to involve the user if it is not clear how existing element have to
be reused. Furthermore, the heuristic presented in Sec. 4 can be improved. For
instance, we have described that the best partial match is the one that reuses
most correspondence nodes. But as different TGG rules may have different cor-
respondence node types, it is reasonable to reuse correspondence information
even if the types do not match (and thus the correspondence object as such can-
not be reused). Last, the technique presented here only considers one single rule
application when building the partial matching search tree. The algorithm could
be extended to find a best partial match over several rule applications and in
this way further increase the amount of elements that are reused. This basically
requires backtracking over rule applications.

The presented technique works only for changes in a single model. We are
currently working on extending our TGG approach to support scenarios where
two concurrently modified models must be synchronized.

References

1. Burmester, S., Giese, H., Tichy, M.: Model-Driven Development of Reconfigurable
Mechatronic Systems with Mechatronic UML. In: Assmann, U., Rensink, A., Aksit,
M. (eds.) Model Driven Architecture: Foundations and Applications. Lecture Notes
in Computer Science (LNCS), vol. 3599. Springer Verlag (2005)

2. Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification technique for the
description of self-optimizing mechatronic systems. Research in Engineering Design
20(4), 201–223 (2009)

3. Gausemeier, J., Schäfer, W., Greenyer, J., Kahl, S., Pook, S., Rieke, J.: Manage-
ment of Cross-Domain Model Consistency During the Development of Advanced
Mechatronic Systems. In: Proc. of the 17th Int. Conference on Engineering Design
(ICED’09) (2009)

4. Giese, H., Hildebrandt, S.: Efficient Model Synchronization of Large-Scale Models.
Tech. Rep. 28, Hasso Plattner Institute at the University of Potsdam (2009)

5. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1) (2009)

6. Greenyer, J., Kindler, E.: Comparing relational model transformation technologies:
implementing Query/View/Transformation with Triple Graph Grammars. Soft-
ware and Systems Modeling (SoSyM) 9(1) (2010)

7. Greenyer, J., Rieke, J.: An improved algorithm for preventing information loss in
incremental model synchronization. Tech. Rep. tr-ri-11-324, Software Engineering
Group, Department of Computer Science, University of Paderborn (2011)

8. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for
the Evolution of Model-Driven Systems. Model Driven Engineering Languages and
Systems (2006)

9. Jimenez, A.M.: Change Propagation in the MDA: A Model Merging Approach.
Master’s thesis, University of Queensland (2005)

10. Körtgen, A.T.: Modellierung und Realisierung von Konsistenzsicherungswerkzeu-
gen für simultane Dokumentenentwicklung. Ph.D. thesis, RWTH Aachen Univer-
sity (2009)

11. Object Management Group (OMG): Meta Object Facility (MOF) Core 2.0 Speci-
fication (2006), http://www.omg.org/spec/MOF/2.0/

12. Object Management Group (OMG): MOF Query/View/Transformation (QVT)
1.0 Specification (2008), http://www.omg.org/spec/QVT/1.0/

13. Ráth, I., Varró, G., Varró, D.: Change-driven model transformations. In: Proc. of
Model Driven Engineering Languages and Systems. Springer (2009)

14. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
20th Intl. Workshop on Graph-Theoretic Concepts in Computer Science (1994)

15. Varró, G., Varró, D., Schürr, A.: Incremental Graph Pattern Matching: Data Struc-
tures and Initial Experiments. Graph and Model Transformation (2006)

16. Varró, G., Friedl, K., Varró, D.: Adaptive graph pattern matching for model trans-
formations using model-sensitive search plans. Electronic Notes in Theoretical
Computer Science 152 (2006)

17. Verein Deutscher Ingenieure: Design Methodology for Mechatronic Systems (2004)
18. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting Parallel Updates with Bidi-

rectional Model Transformations. In: Proc. of the 2nd Int. Conference on Theory
and Practice of Model Transformations (ICMT ’09) (2009)

