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Abstract—Many software-intensive systems are expected to
run continuously while their environments change and their
requirements evolve, so their implementation must be updated
dynamically to satisfy changing requirements while coping with
changing environment properties. Techniques for developing
dynamically updating systems exist, but thus far almost no
attention has been paid to defining when updates are correct
with respect to a changing specification, i.e., when a system
can safely disregard its current obligations and change its
behavior to satisfy the new specification. Based on an intuitive
example, we elaborate a formal definition for correct updates of
a current implementation with respect to specification changes.
Moreover, we present an approach for synthesizing a dynami-
cally updating controller from the current implementation and
changes in a scenario-based specification that updates to the
new behavior as soon as possible. The presented technique is a
first step towards the specification-driven development of safe
dynamically updating controllers.

Keywords-dynamic updates; scenario-based specification;
controller synthesis

I. INTRODUCTION

In many areas today, we find software-intensive, dis-
tributed systems that we expect to continuously operate even
in changing environments and even as their requirements
evolve over time. Examples range from information systems
in commerce and healthcare to autonomous production and
transportation systems. Often it is expensive and impractical
to shut down these systems in order to perform software up-
dates, so the software must be updated during run-time. Our
goal is, in particular, to build systems that not only update
without disruption, but also adapt to changing requirements
as soon as possible, so that a system can quickly adapt to
operate safely in critical situations.

Techniques to develop systems that update their software
to a new version during run-time, called dynamically updat-
ing systems or dynamic software updates (DSU) have been
intensively studied in the past [1]–[8] However, the exist-
ing approaches do not investigate the relationship between
the evolving specification of the system and the updating
software. Most approaches just consider that the system
or its parts update in a state where they are not currently
involved in any interaction [2], or where a component can

be replaced if it still provides the services of the old [5].
In programming languages, there are similar approaches
that require procedures to be inactive during the update
[3], [9], or that an update can only be performed if the
current state is also a state of the new program version [4].
However, the evolution of the software is not viewed from a
requirements specification perspective and it has thus far not
been considered whether an update is correct with respect
to changes in the specification.

Similarly, there has been intensive research on dynami-
cally adaptive systems, which are systems that dynamically
change their behavior during run-time [5], [10], [11]. Lan-
guages have been proposed that typically allow for speci-
fying software that can re-configure between a fixed set of
configurations at pre-defined update points. Also, techniques
exist for checking certain properties of such software. But
again, to the best of our knowledge, it has not yet been
investigated when a system adapts correctly with respect to
changing requirements or environment properties.

In this paper, we address the following questions. We
consider a system of interacting components that reacts
to events in its environment. The system components are
controlled by a finite-state controller that implements a
specification consisting of requirements and environment
assumptions. The requirements describe which sequences
of events are allowed in the system and the environment
assumptions describe which sequences of events can occur
in the environment. If there is a change in the specification,
we would like to know:

1) In which states of a running system is it safe to
disregard the old obligations of the system and update
the behavior to satisfy the changed specification?

2) Based on the old controller and the specification
change, how can a controller be derived that dynami-
cally updates to the new behavior as soon as it is safe
to do so?

The contribution of this paper is twofold. First, based on
an intuitive example, we elaborate a general formal defini-
tion for the states of a current controller in which a dynamic
update to a behavior that satisfies the changed specification



is safely possible. Second, we present a specific approach
where the requirements are formalized by a scenario-based
specification and how, based on the specification changes,
extensions to the current implementation of the system can
be automatically synthesized such that it updates to the new
behavior as soon as possible. We consider specifications
in the form of Modal Sequence Diagrams (MSDs) [12], a
variant of Live Sequence Charts (LSCs) [13]. MSDs allow
us to formally specify which sequences of interactions may,
must, or must not occur during runs of the system. Such
a specification may evolve by adding or removing MSDs.
The approach for synthesizing the dynamically updating
controller is based on a synthesis technique for MSDs that
one of the authors elaborated earlier [14].

In the scope of this paper, we consider that specification
changes are specified by an engineer, but our long-term
vision is that specification changes may in the future also
be derived by components within the system at run-time,
e.g., from high-level goals or user input [15], [16]; likewise
changes in environment assumptions may also be induced
by the system as it monitors its environment. Thus, we
consider our approach a first step towards developing safe
and automatic self-adaptation mechanisms that are driven by
requirement changes and changes of environment properties.

The paper is structured as follows. Based on an intuitive
example in Sect. II, we give a formal definition of updatable
states and correct updates in Sect. III. We then introduce
evolving scenario-based specification in Sect. IV and de-
scribe the approach for synthesizing dynamically updating
controllers in Sect. V. Last, we describe related work in
Sect. VI and conclude in Sect. VII.

II. REQUIREMENTS EVOLUTION EXAMPLES

As an example, we consider an evolving specification
of the RailCab system1. The RailCab system is a concept
for the future rail-bound traffic developed at the University
of Paderborn where autonomous vehicles, called RailCabs,
transport passengers and goods on demand.

Let us consider the simplified requirements of what shall
happen when a RailCab approaches a crossing. Figure 1 (a)
shows a RailCab that approaches the end of its current track
section to enter a crossing. There are different environment
events it receives (observed by sensors or computed by low-
level components) in a certain order as it approaches the
crossing. First, the RailCab detects that it approaches the end
of the current track section (endOfTS). Then it must request
the crossing control the permission to enter (request-
Enter), which must reply whether entering the crossing is
allowed or not (enterAllowed(true/false)) before
the RailCab passes the point where for the last time it can be
guaranteed that braking will safely stop the RailCab before
it will enter the crossing (lastBrake).

1“Neue Bahntechnik Paderborn”, http://www-nbp.upb.de
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Figure 1. A RailCab approaches a crossing

The RailCab then passes two other points: lastEmer-
gencyBrake and noReturn. In between these points,
by applying the emergency brakes, the RailCab will be able
to stop before entering the crossing. If the RailCab is not
allowed to enter, it must brake before reaching noReturn,
the point of no return. If it is allowed to enter, it will even-
tually enter the crossing (enterCrossing). Meanwhile,
the crossing control will have closed the crossing gates.

Now suppose that the requirements change, because it was
observed that a power outage may lead to a situation where
the RailCab enters a crossing while the crossing control
could not shut the gates of the crossing, thus increasing
the risk of accidents. It is now additionally required that
the RailCab must check the crossing’s operational status
by sending the message checkCrossingStatus to the
crossing control, which must in turn reply with its status
via the message crossingStatus(s:Status). This
interaction shall take place not immediately, but some time
after endOfTS, and before lastEmergencyBrake. For
this reason, suppose that another signal was installed on
the track, called approachingCrossing, which shall
trigger this interaction. The RailCab will pass this point after
endOfTS and before lastBrake. Figure 1 (b) illustrates
the additional requirement and the additional environment
event.

But when it is possible to change the behavior so that the
new requirements can be satisfied? We would like to update
to the new behavior as soon as possible, even if a RailCab is
already approaching a crossing, to avoid deadly accidents.

We suppose that one valid option would be to perform
an offline update, i.e., to shut down the system, to update
its controller to a new version that satisfies the new speci-
fication, and to restart the system, with the new controller
in its initial state. Intuitively, performing an online update

http://www-nbp.upb.de


when the controller is in its initial state would lead to an
equivalent observable behavior. Thus, it would be possible
in this case to update the system before the event endOfTS
occurs. Likewise, we could also wait with the update until
after having entered the crossing, so that we satisfy the new
requirements the next time we approach a crossing. Here we
assume the simplified case where the RailCab is not involved
in any other interactions.

There are even more states where we can update and still
achieve the same behavior as an offline update or online
update in the initial state. For example, after endOfTS has
already occurred, it is still possible to update to the new
requirements, because nothing has happened yet that is for-
bidden according to the new requirements. In other words, it
is still possible to complete the sequence of events that took
place since the controller last visited the initial state to a run
that satisfies the new requirements. It would even be possible
to complete the run to satisfy the new requirements after
requestEnter or enterAllowed was sent, assuming
that this interaction takes place immediately after endOfTS.

However, an implementation of the old requirements as
described above will not monitor or remember the newly
introduced environment event approachingCrossing.
Thus, after endOfTS, the controller will not know whether
approachingCrossing has already occurred or not. If
we update the system assuming that this event did not yet
occur, whereas it did in fact occur, we may miss the occur-
rence of the event and never trigger the RailCab to request
the crossing’s operational status. This would violate the
new requirements and could have devastating consequences,
especially if we imagine an example where some existing
safety-mechanism is replaced by a new one. If we update
the system assuming that approachingCrossing has
already occurred whereas in reality it didn’t, our updated
software would check the crossing’s operational status be-
fore approachingCrossing has actually occurred. Here
this would not lead to a dangerous situation, but it is invalid
with respect to both the old and the new specification.

After lastBrake occurred, and because we know
that approachingCrossing must have happened before
that, it would again be possible to complete the run to sat-
isfy the new requirements. After lastEmergencyBrake
occurred, it is however too late, because the RailCab should
have checked the crossing status before.

We assume that system controllers typically visit their
initial state periodically so that eventually an update will
again be possible.

This example shows that a running system, depending on
its state and what we assume happened in the environment,
may or may not be updatable to a changed specification.

III. CORRECT DYNAMIC UPDATES

We give preliminary definitions in Sect. III-A before
defining updatable states and correct updates in Sect. III-B.

A. Object Systems, Controllers, Runs, Specifications

We consider systems of objects that exchange messages.
For simplicity, we only consider synchronous messages.

Definition 1 (Object system, message event, alphabet, run).
An object system consists of a set of objects O that exchange
messages. A message has a name and a sending and
receiving object. The sending and receiving of a message
is called a message event. The alphabet Σ is the set of
different message events that can occur in an object system.
An infinite sequence of message events π ∈ Σω is called a
run of the system.

The objects in the system are controlled by a controller.

Definition 2 (Controller, trace language). A controller is a
finite state machine without final states: a finite state ma-
chine is a quadruple (Σ, Q, q0, T ), where Q = {q0, . . . , qn}
is a finite set of states, q0 is the start state (or initial
state) and T ⊆ Q × Σ × Q is a transition relation. For
a controller c, L(c) ⊆ Σω is the trace language of c. A run
π = (m0,m1, . . .) is an element of L(c) iff there exists a se-
quence of states starting from the start state of the controller
(q0, q1, . . .) ∈ Qω such that ∀i ≥ 1 : (qi,mi, qi+1) ∈ T .

A controller can also consist of the parallel composition
of two controllers that control disjoint subsets of objects.
The composed controllers synchronize on message events
involving objects controlled by both controllers.

Definition 3 (Parallel composition). Let c1 and c2 be two
controllers for disjoint sets of objects. Furthermore, let their
events, Σ1 and Σ2, only be such events where the sending or
receiving object is controlled by c1 resp. c2. If Σ1∩Σ2 6= ∅,
the parallel composition of c1 and c2, written c1||c2, is equiv-
alent to a controller (Q1 ×Q2, (s01 , s02),Σ1 ∪ Σ2, T1||T2)
where Q1 × Q2 is the set of all possible tuples of Q1 and
Q2, and T1||T2 is a transition relation defined as follows:

1) ((s1, s2),m, (s′1, s2)) ∈ T1||T2 if there is a transition
for the event m in controller c1, (s1,m, s

′
1) ∈ T1, and

m is not sent or received by any object controlled by
c2, m /∈ Σ2.

2) ((s1, s2),m, (s1, s
′
2)) ∈ T1||T2 if there is a transition

for the event m in controller c2, (s2,m, s
′
2) ∈ T2, and

m is not sent or received by any object controlled by
c1, m /∈ Σ1.

3) ((s1, s2),m, (s′1, s
′
2)) ∈ T1||T2 if there is a transition

for the event m in both controllers, (s1,m, s
′
1) ∈ T1

and (s2,m, s
′
2) ∈ T2.

Last, we define a specification and when a system satisfies
and implements a specification.

Definition 4 (Specification, satisfying a specification). A
specification S is a tuple (A,R) with the assumptions A
and the requirements R being sets of runs. A run π satisfies
the specification S, written π |= S iff π ∈ A ⇒ π ∈ R,



i.e., if the run is in the assumptions, it must also be in the
requirements. A run is also said to be admissible with respect
to a specification iff it satisfies this specification. A controller
c satisfies S, written c |= S iff each run in L(c) satisfies S.

Definition 5 (System and environment objects). The objects
of the system can be either controllable system objects or
uncontrollable environment objects. For a controller of the
environment objects we require that in every state there are
outgoing transitions by which it can receive any event sent
from system objects to environment objects. For a controller
of the system objects we require that it infinitely often is in
a state with outgoing transitions by which it can receive any
event sent from environment objects to system objects.

Put another way, the environment can never block any
event occurring in the system. Conversely, the system can
perform any finite number of steps, but must eventually
listen for the next environment event.

Definition 6 (Implementation). A controller c for the system
objects implements or realizes S iff c composed with every
possible controller e for the environment objects satisfies S,
more formally ∀e, e||c |= S.

B. Histories and Updatability

We now return to the problem of understanding when a
dynamic update can be safely performed. In Sect. II, we
intuitively argued that an online update is admissible if
it leads to same observable behavior as an offline update,
which involves shutting down the system and restarting the
system with a new controller in its initial state.

Without considering the details on how to shut down a
system, we assume that a system controlled by a controller
c that implements a given specification S can be shut down
and restarted with the (unchanged) controller c in its initial
state without violating the specification S. We can thus
imply that shutting down and restarting a system leads to an
equivalent behavior as a controller visiting its initial state.

An online update of a current controller c that implements
a specification S to a changed specification S′ would thus
be admissible if it leads to a run that is equivalent to a run
of a system controlled by c that eventually reaches its initial
state, and is then replaced by a new controller c′ in its initial
state, where c′ implements the changed specification S′.

An online update is thus possible if the current controller
is in its initial state, but there are even more, later states in
which we can yet modify the controller to achieve the same
behavior. We call these states updatable states.

Intuitively, a state of a controller c is an updatable state if
the sequence of events that lead to it from the initial state can
be completed to a run that satisfies the changed specification.
However, if the system is currently in a state qcur, and
there are different sequences of transitions leading to this
state from the start state, it may be that different sequences

of events may have occurred in the past. These possible
sequences of events are called the possible recent histories of
a state qcur. We require that it must be possible to continue
executing the system so that every possible recent history can
be completed to a run that satisfies the changed specification
S′. Second, we require that there must not be any confusion
on how to continue executing the system. This means that
continuations that complete one possible recent history to a
run that satisfies S′ must also complete every other possible
recent history into a run that satisfies S′.

To determine the possible recent histories of a state in
the controller, we must also include what we assume has
possibly happened in the environment; the system controller
may not capture everything that happens in the environ-
ment. The possible environment behavior is described in the
environment assumptions—the question is just whether we
should already consider possibly changed environment as-
sumptions in a changed specification S′? Very often changes
in the environment assumptions reflect new insights in how
the environment is already behaving right now that have
just not been captured thus far. The event approaching-
Crossing in the RailCab example (see Fig. 1 (b)) could
be a signal along the track section that is already detected
by the RailCabs sensors, but was thus far ignored by the
controller. In that case already the changed environment
assumptions should be considered to determine the possible
recent histories.

If, however, changes in the environment assumptions
describe changes in the environment behavior that will
only take effect during or after the update, then the old
environment assumptions must be considered to determine
the possible recent histories.

To stress this difference, we assume the former case in the
following and determine the possible recent histories based
on an environment e′ that satisfies the changed environment
assumptions A′.

Definition 7 (Possible histories, possible recent histories).
We consider the composition of c with every possible con-
troller for the environment e′ that satisfies the assumptions
of S′ such that L(e′||c) ⊆ A′. The possible histories
Πpast(c, qccur

) are the paths from the start state of e′||c to a
state where c is in qccur

, Πpast(c, qccur
) = {(m1, ..,mn) ∈

Σ∗ s.t. ∃(q0, .., qn) ∈ (Qe′ × Qc)
∗, q0 = (qe′0 , qc0), qn =

(qe′n , qccur ) and ∀i ∈ {0, .., n} : (qi,mi, qi+1) ∈ Te′ ||Tc}.
The possible recent histories Π<

past(c, qccur ) are such pos-
sible histories where the start state is not visited a second
time, i.e., ∀i 6= 0 : q0 6= qi.

Based on the possible recent histories, we define updatable
states of a controller with respect to a changed specification
as follows.

Definition 8 (Updatable, correct update). A state qcur of
a system controller c is updatable to a specification S′ iff



there exists a controller c′ that implements S′ and where the
composition with any possible environment controller e′ has
a trace language L(e′||c′) where

1) for every possible recent history π<
past ∈

Π<
past(c, qccur

) there must be a run π ∈ L(e′||c′)
where π<

past is a prefix of π. In other words, there
must exist a continuation of any possible recent
history, which we call πfuture, that concatenated with
π<
past forms π, ∃πfuture ∈ Σω : π = π<

past · πfuture.
2) If πfuture is a continuation of some possible re-

cent history, it must also be a continuation of
any other possible recent history, ∀π<1

past, π
<2
past ∈

Π<
past(c, qccur ), π<1

past 6= π<2
past : π<1

past · πfuture ∈
L(e′||c′)⇒ π<2

past · πfuture ∈ L(e′||c′)
A system performs a correct update to satisfy the changed
specification S′ if it behaves according to the current
controller c until an updatable state is reached. Then the
sequence of events that occurred since its controller was in
the initial state for the last time will be completed to a run
that satisfies S′.

According to this definition, the controller of the RailCab
would be updatable to the changed specification as described
in Sect. II in a state where endOfTS did not yet occur, see
Fig. 1 (b). This is obvious, since this state corresponds to
the controller’s initial state, and thus the recent histories are
empty. So, if the changed specification S′ is consistent, there
exists a controller c′ implementing S′ that can continue the
recent histories as defined above.

After endOfTS and before lastBrake occurred, the
controller is in a state that is not updatable. This is because
in this state the controller does not monitor or remember
that the environment event approachingCrossing has
occurred. Therefore, there are two different recent histories
in this state, one where the event occurred, and one where
it did not occur. For both of these histories, possible con-
tinuations exist, but the possible continuation of one is not
a possible continuation of the other, i.e., there would be a
confusion on how to continue executing the system.

However, after lastBrake occurred, we are sure, due to
the environment assumptions, that approachingCross-
ing has already occurred. In the state before lastEmer-
gencyBrake, all the recent histories can still be completed
to a run that satisfies the changed specification. In a state
after lastEmergencyBrake, the recent histories cannot
be completed to satisfy the changed specification, because
in the recent histories the messages checkCrossing-
Status and crossingStatus were not sent, which is
a violation of the changed specification, no matter how the
run is completed.

IV. EVOLVING SCENARIO-BASED SPECIFICATIONS

We propose an approach where the specification of the
system is given in the form of Modal Sequence Diagrams

(MSDs) [12]. This section briefly explains the syntax and
semantics of MSDs and we give an example of how an
MSD specification may evolve.

A. MSD Specifications

An MSD specification consists of a description of the
object system and a set of MSDs where each lifeline repre-
sents exactly one object in the system. Figure 2 shows the
MSD specification Drive onto crossing. The object system
is described in the form of a UML collaboration diagram.
Here we consider specifications where the MSDs can be
either requirement MSDs or assumption MSDs [14]. The
latter are annotated with the �EnvironmentAssumption� in
their name label.

Both kinds of MSDs are universal MSDs, which describe
properties that are required (or assumed) for every run of the
system and its environment. The requirement MSD Request-
EnterAtEndOfTrackSection in Fig. 2 for examples formalizes
the requirements described informally in Sect. II. It says that
when the RailCab detects that it approaches the end of the
track section (endOfTS), it must request the permission
to enter the crossing (requestEnter). Then the crossing
control must reply, stating whether entering the crossing is
allowed or not (enterAllowed). This must happen before
the RailCab passes the point where it is guaranteed for the
last time that by braking it will stop before entering the
switch (lastBrake).

The assumption MSD PassingPointsOnTrack says that
when the RailCab detects that it approaches the end of the
track section (endOfTS), it will also eventually pass the
point of the last safe brake (lastBrake), the point of no
return (noReturn), and will then finally enter the crossing
(enterCrossing). For simplicity, these assumptions are
overly strict: we assume that the RailCab does not brake or
reverse.

B. Message Temperature and Execution Mode

The messages in a universal MSD can have a temperature
and an execution kind. The temperature can be either hot
or cold. The execution kind can be either monitored or
executed. In Fig. 2 and 3 there are cold, monitored messages
shown as blue dashed arrows and hot executed messages
shown as red solid arrows.

The semantics these messages is as follows. We consider
that an MSD always has one first message. When an event
occurs in the system that can be unified with the first
message in an MSD, an active copy of the MSD or active
MSD is created. An event can be unified with a message in
an MSD if the event name equals the message name and
the sending and the receiving object are represented by the
sending resp. receiving lifeline of the message. There can
be multiple active MSDs at a time.

As further events occur that can be unified with the subse-
quent messages in the diagram, the active MSD progresses.
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Figure 2. The example MSD specification (S)

This progress is captured by the cut, which marks for every
lifeline the locations of the messages that were unified with
the message events. If the cut reaches the end of an active
MSD, the active copy is terminated.

If the cut is immediately before a message on its sending
and receiving lifeline, this message is enabled. If a hot mes-
sage is enabled, the cut is hot, otherwise the cut is cold. If an
executed message is enabled, the cut is executed, otherwise
the cut is monitored. An enabled executed message is also
called an active message or active event.

If the cut is hot, it is not allowed for events to occur that
can be unified with another message in the MSD that is not
enabled, otherwise this is called a safety violation. If the cut
is cold, such messages are allowed to occur, but then the
active MSD is terminated. This is called a cold violation.
Messages that cannot be unified with any message in the
MSD are ignored. Moreover, it must happen that from some
point on there is forever always at least one active MSD with
an executed cut. This case is called a liveness violation.

The dashed lines in the MSDs of Fig. 2 show the different
reachable cuts. Letters indicate whether the cut is hot or cold
and monitored or executed.

C. Synthesis of Controllers from MSD Specifications

Although MSDs are an intuitive formalism for precisely
capturing system requirements and environment assump-
tions, it may be that an MSD specification is inconsistent,
which means that there does not exist any controller that
implements the specification. In order to check the consis-
tency of an MSD specification, and to obtain a controller
implementing the specification if it is consistent, we have
elaborated a technique for automatically synthesizing con-
trollers from timed and untimed MSD specifications [14].
The technique is based on mapping the synthesis problem
to a two-player game that can be solved by existing, efficient
algorithms that are implemented in UPPAAL TIGA [17], an
extension of the UPPAAL model checker for solving two-
player games. To synthesize a controller from an MSD
specification, the requirement and assumption MSDs are
mapped to a special variant of Timed Automata used by
UPPAAL TIGA. UPPAAL TIGA can calculate a winning

strategy for how the system objects can always react to
environment events such that the specification is satisfied.
The approach also allows us to calculate a maximal winning
strategy, which for every state contains all the admissible
actions of the system. Especially, we can synthesize maximal
strategies where the system can also wait for environment
events to occur even though there is currently an executed
cut. From these winning strategies, controllers for the system
can be derived. Controllers derived from maximal winning
strategies are called maximal controllers.

We assume that the environment can always satisfy the
environment assumptions regardless of the system. To check
this, the synthesis technique also allows us to synthesize
a controller for the environment from the environment
assumptions only.

D. Evolving MSD Specifications

MSD specifications can evolve by adding or removing
MSDs to or from the specification. If a requirement MSD
is added to the specification, it means that an additional
requirement must be satisfied; If a requirement MSD is
removed, some property need no longer be satisfied. If an
assumption MSD is added to the specification, it means that
an additional property can be assumed about the environ-
ment; if an assumption MSD is removed, it means that some
assumption about the environment is no longer valid.

We consider the changed specification as explained infor-
mally in Sect. II: we replace the assumption MSD Passing-
PointsOnTrack by one that also contains the environment
event approachingCrossing and add the requirement
MSD CheckCrossingStatus that describes, similar to the
MSD RequestEnterAtEndOfTrackSection, that the RailCab
must check the operational status of the crossing after ap-
proachingCrossing and before lastEmergency-
Brake occurred. The changed set of assumption and re-
quirement MSDs is shown in Fig. 3.
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Figure 3. The changed MSD specification (S′)



V. SYNTHESIZING DYNAMICALLY UPDATING
CONTROLLERS

In this section we describe our approach to synthesize a
dynamically updating controller, which behaves as the cur-
rent controller and, as soon as an updatable state is reached,
dynamically updates to the new behavior. As illustrated in
Fig. 4, given the controller c and the MSD specifications S
and S′, we automatically construct a dynamically updating
controller, which consists of parts of the current controller
c and a new controller c′, which we synthesize from the
changed specifications. In updatable states of c, the ac-
cording states in the c-part of the dynamically updating
controller have update transitions to states in the c′-part,
where the execution of the system is continued according to
the changed specification.

Without considering the technical details on how this is
done on a specific platform, we provide a procedure for
installing the dynamically updating controller on a running
system. In this procedure, all the states of the current
controller are maintained, and especially the current run-
time state of the current controller remains unchanged.
We change the current controller as follows. During the
installation procedure, we add the c′-part as well as the
update transitions from the updatable states in c to the
corresponding states in the c′-part. Furthermore, we remove
all other outgoing transitions from updatable states in the c-
part. Added states and transitions are labelled with “++” in
Fig. 4; the removed transitions are crossed-out. We assume
that the installation can be performed without interfering
with the system’s observable behavior.

The synthesis of the dynamically updating controller is
achieved in the following steps:

1) We require a model that contains all the possible
recent histories of all the states in c. We thus create
a model of the overall behavior of the system in any
environment that behaves according to the new envi-
ronment assumptions A′. This is done by synthesizing

  
change in requirements or
environment assumptions

Specification S Specification S'
(assumption or requirement
MSDs added or removed)

current  controller
(c)

dynamically updating controller

is implemented by

remains of the 
current controller

(“c-part”)

added controller for 
implementing S'

(“c'-part”)

updatable states added update transitions

automated
synthesis

removed transitions

++ ++

++ ++

++

++

++

++

++
++

++

++
++

++

Figure 4. The approach for synthesizing a dynamically updating controller
from a specification change and the current implementation of the system

the maximal environment controller e′ from A′, which
models any possible environment satisfying A′, and
then computing the parallel composition e′||c.

2) We need a model of the overall behavior of the new
system. We therefore synthesize the maximal con-
troller c′, which implements the new specification S′.
As above, we then compute the parallel composition
e′||c′, which results in a controller that contains all the
possible recent histories of every state in c′.

3) We establish the history relation between states in e′||c
and e′||c′. This relation maps a state in e′||c to a state
in e′||c′, for which every recent history of the first is
also a recent history of the second.

4) From the history relation between e′||c to a state in
e′||c′, we construct the dynamically updating con-
troller as follows. We build a controller by combining
c with c′. Then we transform the history relation into
update transitions between states of c and c′ if such
a transition can be derived in a unique way. Such a
unique way exists for a state q1 in c to a state q′1 in c′

if the history relation contains at least one mapping of
a state (qe′ , q1) in e′||c to a state (q′e′ , q

′
1) in e′||c′ (for

some states qe′ and q′e′ of e′), but there is no other
mapping from (qe′ , q1) in e′||c to a state (q′′e′ , q

′
2) in

e′||c′ where q′2 6= q′1 for some state q′′e′ of e′. A state
in the c-part where an update transition is added is an
updatable state. Last, from these states, we remove all
other outgoing transitions.

In the following subsections we describe our approach
by referring to the RailCab system example. Moreover, we
informally justify why our approach is correct and complete.

A. Example

We assume that we are given the controller c as shown in
Fig. 5 (a), which implements the MSD specification S shown
in Fig. 2. Furthermore, we assume that the specification was
changed to the MSD specification S′ in Fig. 3. The controller
c can be obtained as a result of manual development or
a previous automatic synthesis. We assume that c was
synthesized from the MSD specification; the labels in the
states correspond to cuts in the MSDs of S, see Fig. 2.
Transitions that are labeled with a message event where
the sending object is not controlled by the controller, are
called uncontrollable transitions. They are shown as dashed
arrows. Vice versa, if the sending object of the message
is controlled by the controller, we call the transition a
controllable transition. These are shown as solid arrows.

As a first step, we synthesize the maximal controller e′

from the new environment assumptions A′ of specification
S′ (shown on the left of Fig. 5 (a)). The environment
assumptions here consist only of the assumption MSD
PassingPointsOnTrack. The labels in the states of e′ cor-
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Figure 5. Synthesis Approach

respond to cuts in that MSD accordingly2.
Given e′ and c, we compute the parallel composition e′||c,

shown on the left of Fig. 5 (c). States in e′||c are labelled in
the form (qe′ , (qc)), where qe′ is a state in e′ and qc a state in
c. If in e′||c there are two states q, q′ such that q = (qe′ , (qc))
and q′ = (q′e′ , qc) (i.e., they differ only in the environment
state), this means that there is an environment event in e′

which is not “remembered” by the current controller c.
In the second step, we synthesize the maximal controller

c′ from S′. The states of c′ correspond to reachable cuts
in the MSDs of S′ (see that the states of c′ in Fig. 5 (b)
are labeled with the cuts of PassingPointsOnTrack, Request-
EnterAtEndOfTrackSection, and RequestEnterAtEndOfTrack-
Section, in this order, as they are numbered in Fig. 3).

We then compute the parallel composition e′||c′ between
e′ and c′. The controller e′||c′ has the same states as c′ due to
the fact that c′ is synthesized including the same assumption
MSDs that are the basis for synthesizing e′.

In the third step we compute the history relation between
the states in e′||c and e′||c′. This relation maps states q in

2To reduce the visual complexity, we do not show the self-transitions
of the automata in Fig. 5. The maximal controller e′ allows not only for
endOfTS to occur in the initial state, but also for any other environment
event. Complying with Def. 5, it can also receive any system message in
every state. Likewise, c and c′ have outgoing transitions for all environment
events in the states that have outgoing uncontrollable transitions.

e′||c to states q′ in e′||c′, if for every transition sequence
h leading from the initial state to q, there is a transition
sequence h′ in e′||c′ from its initial state to q′ labeled with
the same event sequence. The resulting mapping is shown
in Fig 5 (c).

Figure 6 shows how in the last step a dynamically
updating controller is formed from combining c and c′ and
transforming the update transitions from the history relation
as explained above. The update transitions are labeled with
ε to indicate that no observable event is associated with
these transitions. We for example create an update transi-
tion ((1, 1), ε, (1, 1, 0)) because ((1, (1, 1)), (1, 1, 0))) is the
unique mapping in the history relation. We do not create
an update transition for state (1, 3), because in the history
relation there are two mappings, ((1, (1, 3)), (1, 3, 0)) and
((2, (1, 3)), (2, 3, 1)) where c is in (1, 3), but c′ is in different
states ((1, 3, 0) and (2, 3, 1)). Thus, for the state (1, 3),
there would be different continuations of the execution and
therefore the state is not updatable.

Figure 6 also shows, as explained above, which transitions
are deleted from and which transitions and states are added
to a running instance of the current controller when installing
the update.

B. Correctness of the Approach

In the following, we justify that our approach correctly
and completely identifies updatable states and that it will
construct a dynamically updating controller that performs
correct updates according to Def. 8.

First we discuss on how our approach identifies all the
updatable states. The justification is divided in four steps:
• By synthesizing the maximal controller e′, and by

computing the parallel composition e′||c we found a
way, as required in the definition, to derive all possible
recent histories π<

past ∈ Π<
past(c, qccur ) for all states

qccur
in the current controller c. The definition also

requires the existence of a controller c′ that implements
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S′ and where the composition with any possible envi-
ronment controller e′ has a trace language L(e′||c′). In
our approach we synthesize the maximal controller c′,
which includes any other controller implementing S′.

• By the way that we compute the history relation, we
are able to justify the first criterion in the definition of
updatable states: our approach maps a state qcur ∈ e′||c
with a state q′cur ∈ e′||c′, if every possible recent
history of qccur ∈ c is a recent history of q′ccur

∈ c′.
This means that for every state q′cur in the history
relation, there exists a run π ∈ L(e′||c′) passing from
q′cur with a prefix equals to any π<

past ∈ Π<
past(c, qccur

).
• By the way that we create update transitions and

thereby identify updatable states in Step 4, also the
second criterion in the definition of updatable states
is satisfied: Our approach does not create an update
transition from a state in the current controller from
which the history relation implies different possible
target states in c′. This would mean that there are
different ways of continuing the execution in this state.
More formally, there would be a continuation πfuture
of a recent history π<1

past ∈ Π<
past(c, qccur

) which is not
a valid continuation of another recent history π<2

past ∈
Π<

past(c, qccur ) with π<2
past 6= π<1

past. Because such states
are not marked as updatable states, our approach only
identifies states that fulfill also this second criterion.

• Our approach is complete and identifies all updatable
states. Since the synthesized controllers e′ and c′ are
maximal, it means they include all possible sequences
of environment and system events. Therefore, by using
any other environment controller that satisfies A′ or any
other system controller implementing S′, we would not
be able to find any other updatable state.

After installing the dynamically updating controller, the
running system performs a correct update for the following
reasons. Consider that the running instance of the system is
in state qccur

. The state qccur
may be an updatable state or

not. If qccur
is an updatable state, it implies by Def. 8 that

the recent history that occurred since c visited its initial state
for the last time can be completed to a run that satisfies S′. It
will be complete to a run satisfying S′ because the all the old
transitions from qccur

were removed and the only remaining
transition is the update transition, that takes the dynamically
updating controller to a corresponding state qc′cur

in the c′-
part. This state has the same recent history and from here,
this history will be completed to a run satisfying S′.

If qccur is not an updatable state, this means that all the
old outgoing transitions of qccur are kept and the controller
will behave like c until it reaches an updatable state.

VI. RELATED WORK

Dynamic software updates have been studied in the past.
The problem has been addressed in the area of program-

ming languages [1], [3], [4] and from the perspective of
distributed, reactive systems [2], [5], [6], [18], [19].

The early work on dynamic software updates in the area
of programming languages required that procedures affected
by the changes were currently idle [1], [3]. Later, Gupta et al.
[4] defined that an update of a program is valid if the current
run-time state of the old program is also a reachable state of
the new program. This problem is called the state mapping
problem. The intuitive motivation for the state mappings is
very similar to the our motivation for updatable states: “an
online change is valid, if after [. . . ] a change the process
starts behaving as if it had been executing the newer version
of the program since the beginning from its initial state.” [4,
p. 122]. Our motivation is similar, but we consider the states
of different finite state machines and system specifications
and more generally argue over the sequences of events.

Dynamic updates in component-based systems were stud-
ied before [2], [18], [19], but these approaches do not
consider the validity of updates with respect to specification
changes. Chaki et al. define that a component can be updated
if it still provides the services of the old [5]. This, however,
implies that the specification cannot become more restrictive.

In the area of dynamically adaptable systems, a number
of techniques for modeling and verifying adaptive software
have been elaborated [10], [11]. The languages they propose
allow for specifying software that can reconfigure between
a fixed set of configurations at pre-defined update points.
Geise et al. propose a formalism based on state charts and
regard mainly the reconfiguration of continuous controllers
[10]. Zhang et al. propose a formalism for modeling adaptive
software that requires the manual definition of update points
[11]. They provide a specification language and verification
support for temporal properties that are invariant during the
adaptation or adaptation-specific. Both approaches, however,
do not consider that certain configurations comply to certain
requirements and that reconfigurations must satisfy certain
conditions with respect to these requirements.

Hayden et al. [8] present an approach for testing dy-
namically updating software. It assumes that test suites for
two program versions are given and performs tests of the
software before and after an update. Also here the update
points are specified manually and the allowed update behav-
ior is implied by the test suites—criteria for allowable update
points or automatically finding allowable update points is not
considered, nor is any relation defined between update tests
and specifications changes.

To the best of our knowledge, this paper proposes the
first approach for automatically synthesizing a dynamically
updating controller from specification changes.

VII. CONCLUSION AND OUTLOOK

In this paper, we considered the question of when a
dynamic update of a controller is correct with respect to
changes in its specification. Based on an intuitive example,



we elaborated a definition for updatable states and for
correct updates. Furthermore, we developed an approach for
automatically synthesizing a dynamically updating controller
based on a current controller and changes in a behavioral
specification. We considered the specification to be formal-
ized by MSDs. However, the approach can also be adapted
to other specification formalisms like linear temporal logic
or automata on infinite words.

This paper takes a specification-oriented perspective on
dynamic software updates. This is crucial because changes in
practice are mostly considered on the specification level first.
Moreover, we present an automated approach for making
safe updates to critical systems more quickly available. We
also envision to build self-adaptive systems where the system
autonomously derives new requirements at run-time, e.g.,
from high-level goals, or learns about changing environment
properties. Here, our approach is the key technique for
automatically computing safe dynamic adaptations.

In the future, we plan to implement and evaluate our
approach. It may be that, depending on the kinds of specifi-
cation changes, weaker or stricter criteria for updatable states
could be required. Also, we would like to extend the ap-
proach to support the synthesis of a distributed dynamically
updating controller for each system object. This possible in
principle [20], but rigorous techniques for doing so are still
subject to current research. Furthermore, since time is an
important aspect in many critical systems, we also plan to
address real-time scenario-based specifications, which are,
however, already supported by our synthesis technique [14].

Another issue that will be critical for the practical appli-
cability of our technique is the inherent complexity of the
synthesis problem. However, since specification changes are
mostly just evolutionary, the synthesis of a controller for the
new system can be greatly aided by looking at what were
admissible actions in the old controller. Such optimizations
pose an interesting new research question.
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