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Abstract. Modern technical systems often consist of multiple compo-
nents that must fulfill complex functions in diverse and sometimes safety-
critical situations. Precisely specifying the behavioral requirements for
such systems is a challenge, especially because there may be inconsistent
requirements in possibly unforeseen component configurations. We pro-
pose a scenario-based specification approach based on Modal Sequence
Diagrams and a novel technique for finding inconsistencies in such spec-
ification based on a combination of simulation and synthesis techniques.
The simulation via the play-out algorithm can be used to analyze the
scenario requirements in large and dynamic systems. Play-out, however,
may run into avoidable violations, so that the engineer cannot assume
the specification’s inconsistency nor its consistency. We thus propose to
check specification parts for static component configurations via syn-
thesis. Then, if the part specifications are consistent, the resulting con-
trollers can guide the play-out for the complete specification, avoiding
more avoidable violations in the next simulation run.

Keywords: scenario-based specification, dynamic systems, consistency check-
ing, simulation, synthesis

1 Introduction

Modern technical systems in areas like transportation, traffic, or production typ-
ically consist of multiple components that must interact to fulfill complex func-
tions in diverse and sometimes safety-critical situations. Moreover, these systems
? This work was elaborated mainly as part of the author’s dissertation thesis [8], while
he was working at the University of Paderborn, Germany



are often dynamic, i.e., the relationships among the components may change or
components may leave or enter the system. Precisely and consistently specify-
ing the requirements for such dynamic systems is a major challenge, especially
because there may be many, possibly unforeseen configurations of components
where components are involved in multiple use cases at once and conflicts among
the components’ interaction specifications are possible to occur. If such inconsis-
tencies remain undetected, this may lead to costly iterations in the development
or to flaws in the final product.

In this paper, we propose first (1) a use case- and scenario-based approach
for specifying the interaction behavior of components in a dynamic system. The
approach is based on Modal Sequence Diagrams (MSDs) [18,12], a recent variant
of Live Sequence Charts (LSCs) [6], that allows the engineer to formally specify
what may, must, or must not happen in a system. Second (2), we propose a
novel technique for finding inconsistencies in MSD specifications, which is based
on the symbiosis of simulation and synthesis techniques.

As an example, we consider the specification of the RailCab system, which is
developed at the University of Paderborn. Here, small, autonomous rail vehicles,
called RailCabs, transport passengers and goods on demand. This system is
highly dynamic as relationships among RailCabs and control stations change
when for example RailCabs move along track sections, switches, and crossings.

First, to model such systems, we propose a special specification scheme where
the requirements described in use cases are formalized by scenario-based use case
specifications. A use case specification captures the structure and interaction
behavior described in a use case formally by using UML collaboration diagrams
and MSDs. We extend the MSDs with OCL binding expressions that can be
attached to lifelines and allow the engineer to specify precisely which components
in a dynamic system shall play which role in a use case. Within Scenario-
Tools, we have implemented an Eclipse/EMF&UML-based simulation engine
for executing such use case specifications via the play-out algorithm [14,18]. This
helps the engineer understand the interplay of different MSDs as environment
events occur in a particular, maybe structurally evolving, system instance.

The play-out algorithm typically has to make many non-deterministic choices
when executing the MSDs. In doing so, it may reach a state where a number
of MSD require that something must happen that is forbidden by other MSDs.
Such a violating state may indicate that the specification is inconsistent, but it
may also be consistent and just the play-out algorithm did not “look ahead” to
avoid the violation. Finding this out manually can be a very difficult.

We observe in our example that use cases typically describe the interaction of
a fixed set of participants. For this case, we developed a synthesis technique that
can effectively determine whether such a use case specifications is inconsistent or
not. If it is consistent, we can synthesize a strategy that demonstrates that there
exists a system that can always react to all possible sequences of environment
event in a way that satisfies the use case specification.

However, even if all use case specifications are consistent, it may be that con-
flicts among MSDs of different use case specifications occur if use cases overlap,



i.e., components are involved in multiple use cases at the same time. To further
analyze the specification, we therefore still rely on the simulation via play-out.
To improve the play-out, we developed a mechanism that guides the play-out by
the strategies that could be successfully synthesized from single use case speci-
fications. This improves the effectiveness of the simulation, giving the engineer
more reason to suspect an actual inconsistency if a violation occurs. In the fu-
ture, this approach could even be extended to successively eliminate all false
negatives by synthesizing strategies also for overlapping use case occurrences.

This paper is structured as follows. We explain the foundations of MSDs
in Sect. 2 and present an example use case specification in Sect. 3. A strategy
that could be synthesized from a use case specification is explained in Sect. 4.
In Sect. 5 we then describe our extended play-out algorithm and overview our
tool implementation in Sect. 6. We discuss related work in Sect. 7 and conclude
in Sect. 8.

2 Foundations

MSDs were proposed by Harel and Maoz as a formal interpretation of UML
sequence diagrams, based on the concepts of LSCs [12]. In the following, we first
explain the basics of MSDs and the play-out algorithm with respect to static
systems. In Sect. 2.3 we then explain extensions to MSDs and their interpretation
in the context of dynamic systems.

2.1 MSD Specifications

An MSD specification consists of a set of MSDs. An MSD can be existential or
universal. Existential diagrams specify sequences of events that must be possi-
ble to occur in the system. Universal diagrams specify requirements that must
be satisfied by all sequences of events that occur. During specification, the fo-
cus typically lies on universal MSDs, since they allow the engineers to express
mandatory behavior. We also focus on universal MSDs in this paper.

Each lifeline in an MSD represents an object in an object system that consists
of environment objects and system objects. The set of system objects is called
the system; the set of environment objects is called the environment.

The objects can interchange messages. Here we consider only synchronous
messages where the sending and receiving of the message is a single event. Our
approach can, however, be extended also to asynchronous communication. We
call the sending and receiving of a message a message event or simply event.

The messages in a universal MSD can have a temperature and an execution
kind. The temperature can be either hot or cold; the execution kind can be either
monitored or executed.

The semantics of these messages is as follows: An event can be unified with a
message in an MSD iff the event name equals the message name and the sending
and the receiving objects are represented by the sending resp. receiving lifelines
of the message. When an event occurs in the system that can be unified with the



first message in an MSD, an active copy of the MSD or active MSD is created.
(We consider that an MSD has only one first message.) As further events occur
that can be unified with the subsequent messages in the diagram, the active
MSD progresses. This progress is captured by the cut, which marks for every
lifeline the locations of the messages that were unified with the message events.
If the cut reaches the end of an active MSD, the active copy is terminated.

If the cut is in front of a message on its sending and receiving lifeline, the
message is enabled. If a hot message is enabled, the cut is also hot. Otherwise the
cut is cold. If an executed message is enabled, the cut is also executed. Otherwise
the cut is monitored. An enabled executed message is called an active message.

A safety violation occurs iff in a hot cut a message event occurs that can be
unified with a message in the MSD that is not currently enabled. If this happens
in a cold cut, it is called a cold violation. Safety violations must never happen,
while cold violations may occur and result in terminating the active copy of the
MSD. If the cut is executed, this means that the active MSD must progress and
it is a liveness violation if an active MSD never terminates or progresses to a
monitored cut.

As an example, Fig. 1 shows an MSD and an illustration of the considered
example. Cold monitored messages are shown as blue, dashed arrows; hot exe-
cuted messages are shown as red, solid arrows. The dashed horizontal lines in
the MSD RequestEnterAtEndOfTrackSection also show the reachable cuts, which
are accordingly cold and monitored (c/m) or hot and executed (h/e). Intuitively,
this MSD expresses the following requirements. We consider a scenario where a
RailCab moves along its current track section. At some point the RailCab rc
detects that it reaches the end of the current track section. This is modeled as
the message endOfTS sent between the environment and the RailCab rc. Now
the RailCab rc must send requestEnter to the next track section control tsc2,
which must reply with enterAllowed. These two messages must be sent before
the RailCab reaches a point where it is possible for the last time to safely break
before entering the switch (modeled by the environment message lastBrake).

Messages can also have parameters of certain types. Message events must
then carry according parameter values. Here the message enterAllowed has a
Boolean parameter, representing the choice to allow or deny the RailCab to enter.
In this MSD, the required parameter value is not specified, which allows the
parameter value to be either true or false. For more details on the interpretation
of parameter values, we refer to [8, pp. 33].

rc tsc2

illustration

endOfTS
lastBreak

enterNext

tsc1 env:Environment rc:RailCab tsc2:TrackSectionControl

MSD RequestEnterAtEndOfTrackSection

1. (h/e)

2. (h/e)

3. (c/m)

inactive
endOfTS

requestEnter

enterAllowed
(isAllowed)lastBrake

Fig. 1. The MSD RequestEnterAtEndOfTrackSection with illustration



We assume that the system is always fast enough to send any finite number
of messages before the next environment event occurs. An infinite sequence of
message events is called a run of the system and its environment. A run satisfies
an MSD specification consisting of a set of universal MSDs if it does not lead
to a safety or liveness violation in any MSD. (Multiple MSDs may be active
at the same time.) We say that an MSD specification is consistent or realizable
iff it is possible for the system objects to react to every possible sequence of
environment events so that the resulting run satisfies the MSD specification.

2.2 Play-Out

Harel and Marelly defined an executable semantics for the LSCs, called the play-
out algorithm [13], that was later also defined for MSDs [18]. The basic principle
is that if an environment event occurs and this results in one or more active
MSDs with active (enabled executed) system messages, then the algorithm non-
deterministically chooses to send a corresponding message if that will not lead
to a safety violation in another active MSD. The algorithm will repeat sending
system messages until no active MSDs with an active message remain. Then the
algorithm will wait for the next environment event, and this process continues.

If the play-out algorithm reaches a state where there are active messages,
but they would all lead to safety violations, this is called a violation. If the
MSD specification is inconsistent, this implies that there exists a sequence of
environment events that will lead the play-out algorithm to a violation. Such
a situation can, however, also occur if the specification is consistent. That is
because the play-out algorithm will often make non-deterministic choices without
“looking ahead” if they guarantee it not to run into violations later.

2.3 MSDs and Dynamic Systems

When specifying the behavior of dynamic systems, it is often impractical to
consider MSDs where each lifeline refers to a concrete object. Instead, symbolic
lifelines were introduced by Marelly et al. [19,14], which refer to a class. MSDs
with symbolic lifelines are also called symbolic MSD; MSDs with non-symbolic
lifelines, also called concrete lifelines, are called concrete MSDs. Here, concrete
lifelines have an underlined label; the label of symbolic lifelines is not underlined.

In an active copy of an MSD with symbolic lifelines, a symbolic lifeline can
be bound to an object that is an instance of the class referenced by the lifeline.
For a given object system, the semantics of a symbolic MSD is equivalent to
a set of concrete MSDs where for each possible combination of bindings of the
symbolic lifelines, there exists a concrete MSD with lifelines corresponding to
this possible combination of bindings.

Typically, we want to restrict a symbolic MSD to specify the behavior only
for combinations of objects that have certain relationships or properties. Then,
binding expressions can be added to the MSD in order to restrict the possible
lifeline bindings. Harel and Marelly define that binding expressions are expres-
sions over object properties or relationships between objects that evaluate to a



Boolean value [14]. A symbolic MSD then only specifies the behavior for the
combinations of objects where there exists a set of lifeline bindings where all
binding expressions evaluate to true.

Instead of translating symbolic MSDs to sets of concrete MSDs, Harel and
Marelly extended the play-out algorithm to handle the dynamic binding of sym-
bolic lifelines, supporting a simple form of binding expressions [14, pp. 209]. In
ScenarioTools, we implement similar mechanisms and consider binding ex-
pressions of the form <lifeline-name> := <expr> where <lifeline-name> is
the name of a lifeline, also called the slot lifeline, and <expr> is an OCL expres-
sion, also called the value expression. The value expression can evaluate to an
object that is an instance of the slot lifeline’s class.

Lifeline names can be used as variables within value expressions. If a lifeline is
bound to an object, so is the corresponding variable. Also other variables can be
used in value expression. In the course of progressing an active MSD, there may
be for example variables that are assigned parameter values, like the variable
isAllowed show in Fig. 1. The details of these mechanisms are not relevant here.
Important is that value expressions can only be evaluated when all the variables
appearing in the expression are bound.

During play-out, symbolic MSDs and binding expressions are interpreted as
follows: As a message event can be unified with a first message in an MSD,
an active copy of the MSD is created with the sending and receiving lifelines
of the first message bound to the sending and receiving object of the message
event. Then the value expressions of the binding expressions are evaluated as
soon as that is possible, and the corresponding slot lifelines are bound to the
resulting objects. It must not happen that a message is enabled and the sending
or receiving lifeline is unbound.

As an example, consider the symbolic variant of the MSD RequestEnterAt-
EndOfTrackSection shown on the right of Fig. 2, executed in the context of an
object system as illustrated on the left. If the message endOfTS is sent from the
environment object e to the RailCab rc1, an active copy of the MSD is created
where the lifeline env is bound to the object e and the lifeline rc is bound to
the object rc1. Now the binding expression can be evaluated, which results in
binding the lifeline next to the object tsc2.

We also consider that the value expression can evaluate to a set of objects.
Then for each object in the set a copy of the active MSD is created with the slot
lifeline bound to that object (see also [14, pp. 215]).

endOfTS

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed
(isAllowed)

MSD RequestEnterAtEndOfTrackSection

lastBrake

next := rc.current.next

tsc2:Track
SectionControl

nextnexttsc1:Track
SectionControl

rc1:RailCab

...
next

registered-
RailCabs

current

...

(dynamic) object system

e:Environment
endOfTS

link
message event

Fig. 2. A dynamic object system and the symbolic version of the MSD RequestEnter-
AtEndOfTrackSection



3 Use Case Specifications

We observe that the early, informal requirements of a dynamic system are often
structured in use cases that describe (1) a particular configuration of objects
and (2), by a number of scenarios, how these objects may, must, or must not
react to certain, usually external, events. Instead of specifying the behavior of
a dynamic system with a plain set of symbolic MSDs, we thus propose a more
systematic approach where an engineer first captures the objects involved in the
use case and then specifies the MSDs based on this structure.

3.1 Use Case Specification Structure

Figure 3 shows the example of a use case specification for the use case RailCab
Obstacle Detected. The use case describes that a RailCab that detects an obstacle
must report a hazard and its position to its current track section control, which
then must warn the other RailCabs on that track section. The MSDs are in
fact an example where the play-out algorithm may choose an execution that
inevitably leads to a violation—but we will return to that in Sect. 4. Let us first
examine the structure and semantics of such a use case specification.

A use case specification consists of a package with class definitions and a
collaboration (dashed ellipse) [1, Sect. 9.3.3]. The collaboration captures the
objects participating in a use case and it contains a set of MSDs. The nodes
in the collaboration diagram are called roles, and each role represents a system
or an environment object. Here environment roles are represented by a cloud
symbol. The roles are typed by classes, which are modeled in the class diagram.
The classes can define attributes, associations, and operations; the latter indicate
which messages an instance can receive.

Each lifeline of an MSD represents one role in the collaboration. Connectors
between the roles can be used for indicating structurally which roles interact in
the use case. In the MSDs it can then be ensured that messages are only modeled
between lifelines where their roles are connected.

3.2 Use Case Specification Semantics

The advantage of this specification scheme, besides supporting a more structures
modeling approach, is that it allows for two different interpretations that are
crucial for the symbiosis of simulation and synthesis.

Symbolic interpretation: The MSDs are interpreted as symbolic MSDs, as
if their lifelines would directly reference the classes that type the roles represented
by each lifeline. The object system can be any valid instance of the class model.
The collaboration has no particular semantics.

Static interpretation: Here we assume an object system where for each role
in the collaboration there is a corresponding object of the class typing the role.
The MSDs are then interpreted as static MSDs where each lifeline represents
the object that corresponds to its role.



obstacleDetected

env:Environment detectingRC:RailCab current:TrackSectionControl

hazardOccurred

MSD WarningWhenObstacleDetected 

current := detectingRC.current

warnedRC:RailCab

warnedRC := current.
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obstacleAtPosition

obstacleDetected

env:Environment detectingRC:RailCab current:TrackSectionControl

obstaclePosition

MSD ReportObstaclePosition 

current := detectingRC.current

warnedRC:RailCab

warnedRC := current.
registeredRailCabs

->excluding(detectingRC)

obstacleAtPosition

(0,0,0,0)
(1,1,1,1)
(1,2,2,1)
(1,2,3,2)

(0,0,0,0)
(1,1,1,1)
(1,2,2,1)

detectingRC:RailCab current:TrackSectionControl

hazardOccurred

MSD ReportObstaclePositionAndIssueWarning  
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hazardOccurred()
obstaclePosition()      
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hazardWarning()

registered-
RailCabs 0..*

0..1 current

w

RailCabObstacleDetected

detectingRC:RailCab

current:TrackSectionControl

warnedRC:RailCab

RailCabObstacleDetected

package RailCabObstacleDetected

env:Environment

Fig. 3. The specification for the use case RailCab Obstacle Detected

The static interpretation makes the formal analysis of the use case specifi-
cation feasible, which would not be the case with the symbolic interpretation, if
we would have to consider many different object systems with different possible
bindings of symbolic lifelines. The second-listed author has developed such a
analysis technique in his thesis [8], which will be explained Sect. 4.

3.3 Combining Use Case Specifications

This modeling scheme also allows different engineers to specify different use case
specifications in parallel. These can later be composed as follows.

(1) The class models of the use case specifications can be composed by merg-
ing them into one package using UML package merge [1, Sect. 7.3.41]. Package
merge copies the contents of one or multiple merged packages into a merging
package. Equally named UML elements (classes, attributes, operations, etc.) in
the merged packages are mapped to the same element in the merging package.

(2) The UML package merge only defines how to merge structural (class)
models. It could probably be extended easily to merge also the MSDs—but
instead, we just slightly modify the symbolic interpretation of the MSD: We
assume that the object system can be any valid instance of the merged class
model. Then we interpret the sets of MSDs of all use case specifications like a
plain set of (symbolic) MSDs where we interpret an MSD lifeline as if it was
typed by the class that its role’s class was merged into.

We call the merged package the integrated package. With this symbolic in-
terpretation of the MSDs, it forms the integrated specification of the system.

If one use case depends on another, for example because one refers to message
types (i.e., operations) or object properties already specified in another, this can
also be expressed by a package merge where the depending use case specification
package merges the package of the use case specification it depends on.



4 Synthesis

As already proposed by Bontemps et al. [3], the problem of deciding whether
an MSD/LSC specification is consistent can be mapped to a two-player game
problem. Intuitively, this means that environment events and system reactions
are mapped to “moves” in a game that lead from one game state to another. A
game state in this case is essentially a set cut configurations of currently active
MSDs. Then it is checked whether there exists a strategy for the system against
the environment such that a certain winning condition is satisfied. The winning
condition here is that never a safety or liveness violation occurs and that there is
no infinite sequence of system events, i.e., always eventually a next environment
event can occur.

Today there exist a number of tools with efficient algorithms for finding win-
ning strategies in two-player games. Similar to Bontemps et al, we have developed
a synthesis approach [8,7] where MSD use case specifications are mapped to the
input of Uppaal Tiga [2], a tool based on the Uppaal model-checker that im-
plements an efficient game-solving algorithm [4]. Novel in our approach is that it
also supports timed MSDs and MSDs that formulate environment assumptions,
i.e., properties that the environment must satisfy to “win” against the system.
But these novelties are not relevant in the scope of this paper.

In our synthesis approach, if an MSD use case specification is consistent,
Uppaal Tiga will synthesize a strategy that shows us how the system can
always react to the environment such that the specification is satisfied. Uppaal
Tiga can even synthesize a complete strategy that shows all the moves to all
states in which the system will be able to win. Furthermore, if an MSD use case
specification is inconsistent, Uppaal Tiga can synthesize a counter-strategy that
shows how the environment can always violate the MSD specification.

Listing 1.1 shows a excerpt from a complete strategy synthesized from the
use case specification RailCab Obstacle Detected; Uppaal Tiga generates such a
textual output to the console or a file. Here only one state in the game and the two
winning transitions for this state are shown. As shown here, the sate is essentially
a particular configuration of cuts of the active MSDs (see [8, App.C.2] for more
information). Here it is the cuts reached in the MSDs after the environment
event obstacleDetected occurred (compare also with Fig. 3).

Listing 1.1. Excerpt from the controller synthesized from the specification of the use
case Warn RailCabs On Track

Strategy to win :
. . .
State : ( . . . ) . . .
WarningWhenObstacleDetected_env=1
WarningWhenObstacleDetected_detectingRC=1
WarningWhenObstacleDetected_current=1
WarningWhenObstacleDetected_warnedRC=1
ReportObstaclePosit ion_env=1
ReportObstaclePosit ion_detect ingRC=1
ReportObstac lePos i t ion_current=1
ReportObstaclePosition_warnedRC=1
ReportObstaclePosit ionAndIssueWarning_detectingRC=0
ReportObstaclePosit ionAndIssueWarning_current=0



ReportObstaclePositionAndIssueWarning_warnedRC=0
When you are in true , take transition

systemProcess . systemActive−>systemProcess . produceEvent
{ 1 , tau , event := detectingRC_current_reportHazard }

When you are in true , take transition
systemProcess . systemActive−>systemProcess . produceEvent

{ 1 , tau , event := detect ingRC_current_obstac lePos i t ion }
. . .

According to this strategy, the system can satisfy the use case specification
against any environment if in this state the RailCab detectingRC sends the mes-
sage reportHazard or obstaclePosition to the track section control current.
As it is a complete strategy, we know that sending any other system message
will not allow the system to “win” against any other environment.

The possible violation is follows: Sending the message hazardOccurred, which
in this state is enabled in the MSD WarningWhenObstacleDetected, must be fol-
lowed by sending obstaclePosition. This then leads to a situation where there
is an active copy of MSD WarningWhenObstacleDetected in cut (1,2,2,1) and an
active copy of MSD ReportObstaclePositionAndIssueWarning in cut (2,2,1). In the
former, hazardWarning must occur, but obstaclePosition must not occur. In
the latter, obstaclePosition must occur, but hazardWarning must not occur.
Thus a safety or liveness violation is inevitable.

5 Combining Play-Out and Synthesis

The naive play-out of an integrated specification containing the use case RailCab
Obstacle Detected could easily run into the above-mentioned, avoidable viola-
tion. In many cases, this could be avoided by using the strategies that could be
successfully synthesized from single use case specifications. In the following, we
explain an extension of the play-out algorithms that is guided by these strategies.

The principle of this extension is shown in Fig. 4. At the bottom, it sketches a
RailCab object system where the environment just sent the message obstacle-
Detected to the RailCab rc2. On the top left, two active MSDs are shown, which
are activated as a result. The lifeline bindings are indicated by the small labels
on the lifelines. The remaining parts of the figure are explained in the following.

The main challenge in employing the strategies synthesized from use case
specifications is to determine in a state during play-out which state in which
strategy (or which states in which strategies) to inquire about which message
event can be safely executed next. Intuitively, we have to determine where a use
case “occurs”. We define a use case occurrence as a set of active MSDs where
the MSDs belong to the same use case occurrence and the lifelines representing
the same role are bound to the same object.

After finding the active MSDs that make up a use case occurrence (1), we
create an active copy of the corresponding strategy (also called active strategy).
Then we find a state in the this strategy that corresponds to the cuts of the
active MSDs (2). This state is also called the current state of the active strategy
for the use case occurrence.
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Fig. 4. Guiding the play-out by strategies synthesized from use case specifications

Once such corresponding states are found for all occurrences of use case for
which a strategy is provided, we determine the prescribed and disobeying message
events (3). A message event is prescribed if it corresponds to an event that labels
a transition leaving the current state of the active strategy; a message event is
disobeying if it corresponds to a message event that labels a transition that is
not leaving the current state. (For brevity, we skip a more formal definition when
message events correspond in this case.)

As in regular play-out, we also have to determine which message events are
active and safety-violating in the active MSDs. We can now execute an active
event that is not safety-violating any other active MSD, and not disobeying any
active strategies (4). This process is repeated until the there are no more active
events. Then the system waits for the next environment event.

In this extended play-out it is not guaranteed that never an active strategy
must be disobeyed or never a safety violation occurs. This may still happen
when use cases overlap, i.e., objects participate in multiple use case occurrences
at once. Then again safety violations and events disobeying active strategies
may not necessarily mean that the specification is inconsistent—it could still
be that the system in the past could have chosen another sequence of steps to
avoid this. The second-listed author also describes an extension of this approach
for employing strategies synthesized from composed use case specifications, but
these concepts are not yet implemented.

After an active strategy was disobeyed, the play-out can still continue, but
then it may no longer be possible to find current state for the disobeyed active
strategy. Note that if the strategies used in this process are not complete, it
becomes more likely that active strategies must be disobeyed.



Note also that we can only identify use case occurrences if all lifelines of
an active MSD are bound. For this process to work properly, there should thus
not be an active MSD with unbound lifelines. It remains to be investigate if
maybe the play-out can follow multiple active strategies in parallel for different
“candiadate” use case occurrences as long as lifelines are unbound.

6 Realization and Evaluation

The concepts introduced here have been implemented in an Eclipse-based tool
suite called ScenarioTools1. Figure 5 gives an overview of ScenarioTools
and the supported modeling and analysis process.

In the first step, a UML-based MSD specification of the system is modeled.
For modeling, ScenarioTools extends the Topcased UML-Editor. The fig-
ure shows a number of packages that represent use case specifications (1). As
mentioned before, use case specifications can be modeled in separate packages,
dependencies can be expressed by package merge relationships, and finally all
use case specifications are merged into an integrated package.

The figure here also shows a base package. We suppose that sometimes, prior
to specifying the use cases, the requirements engineers already want to formally
capture a structural (class) model of the system. This is also called domain
modeling, and fosters a common understanding of the domain. This can be done
in this separate package from where classes, associations, and attributes can be
reused in the use case specifications. To do this, the use case specifications define
merge relationships to the base package.

In the second step, after formally specifying the use cases, we want to create
an instance system, or possible many instance systems, to carry simulations
of the specified behavior. To be able to do this, we create an EMF/ECore2

class model that corresponds to the merged class model of the UML-based MSD
specification. This transformation is described by Triple Graph Grammar (TGG)
that can be executed using the TGG Interpreter3. The transformation not
only creates the ECore class model, but also a correspondence model that stores
a detailed mapping between classes, properties, associations and operations in
the UML and ECore class models.

The Eclipse/EMF framework allows us to automatically generate simple
editors from the ECore class model. With the help of these editors, instance
models can easily be created (3). In the RailCab case, this could be a particular
RailCab track system with a particular number of RailCabs currently on certain
track sections.

Based on an instance model, we can now simulate the behavior defined in the
UML-based MSD specification (4). To know which MSD lifelines can be bound
to which objects and which messages can be sent between the objects, we exploit
the information in the above-mentioned correspondence model.
1 http://www.cs.uni-paderborn.de/index.php?id=scenariotools
2 http://www.eclipse.org/emf/
3 http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter

http://www.cs.uni-paderborn.de/index.php?id=scenariotools
http://www.eclipse.org/emf/
http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter
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Fig. 5. Overview of the ScenarioTools simulation

The figure also illustrates that the play-out can be guided by strategies that
could be successfully synthesized from use case specification.

ScenarioTools supports different simulation modes: a user-guided step-
by-step selection of system and environment events and a random execution.

7 Related Work

In the past, many approaches for the scenario-based specification of system re-
quirements have been proposed. Many, however, did not regard that scenarios
can be overlapping [15] or they only regarded existential scenarios, i.e., descrip-
tions of what must be possible to occur [17]. Others considered combining exis-
tential scenarios with pre-and post-conditions on messages [21], automata [20],
or safety properties in temporal logic [5] for expressing also mandatory require-
ments. With these additions also came the problem of checking the consistency
of the specification, which is addressed in these papers. To the best of our knowl-
edge, all these approaches did not consider the specification of dynamic systems.

LSCs introduced a rigorous semantics for expressing universal and existential
requirements [6] and only with symbolic lifelines [19], the behavior of dynamic
systems could be specified in a formal scenario-based way. Many approaches for
consistency checking LSC specifications and synthesizing controllers from them
were proposed [9,11,3,16], but they only consider static systems.



Another approach for improving the play-out of LSC specifications is smart
play-out [10]. Here model-checking is employed for finding a sequence of steps for
the system in reaction to an environment event that avoids avoidable violations.
The problem here is that this approach can only “look ahead” until the next
environment event occurs, thus not all avoidable violations can be anticipated.
Also, smart play-out only works in a static setting.

Maoz et al. presented an alternative implementation of the play-out algorithm
using AspectJ [18]. This implementation is extensible to plug-in different play-
out “strategies”, which for example allows for integrating smart play-out. This
implementation of the play-out algorithm is also used in the PlayGo tool4. The
website also mentions that synthesized strategies and counter-strategies can be
executed using this tool, but no details have been published thus far. Kugler
et al. also mention to execute synthesized controllers [16], but these are not
combined with play-out.

8 Conclusion and Outlook

We presented a novel extension of the play-out algorithm which combines play-
out of MSDs in a dynamic object system with strategies synthesized from speci-
fication parts. This helps avoid more avoidable violations and improves the play-
out because engineers now have more reason to suspect an actual inconsistency
when violations occur.

We are currently developing a new version of the ScenarioTools play-out
and synthesis and plan to extend this approach to also support environment
assumptions and parametrized messages. We also plan to further investigate the
symbiosis of synthesis and play-out for composed use cases.
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