
Requirements Engineering
doi: 10.1007/s00766-013-0169-4

Features meet Scenarios: Modeling and Consistency-Checking
Scenario-Based Product Line Specifications

Joel Greenyer · Amir Molzam Sharifloo · Maxime Cordy∗ · Patrick

Heymans

Received: 22nd November 2012 / Accepted: 26 March 2013

Abstract Modern software-intensive systems typically

consist of multiple components that provide many func-

tions by their interaction. Moreover, often not only a

single product, but a whole product line with different

compositions of components and functions must be de-

veloped. To cope with this complexity, engineers need

intuitive, but precise means for specifying the require-

ments for these systems and require tools for automat-

ically finding inconsistencies within the requirements,

because inconsistencies could lead to costly iterations

in the later development. In recent work, we proposed

a technique for the scenario-based specification of inter-

actions in product lines by a combination of Modal Se-

quence Diagrams and Feature Diagrams. Furthermore,

we elaborated an efficient consistency-checking tech-

nique based on a dedicated model-checking approach
for product lines. In this paper, we report on further

evaluations that underline significant performance ben-

efits of our approach. We describe further optimizations

and detail on how we encode the consistency-checking

problem for a model-checker.

Many modern software-intensive systems consist of

multiple components interacting together to deliver the

intended functionality. Often, these systems come in

many variants (products) and are managed together as

a software product line. This variability is the source of

* FNRS research fellow

Joel Greenyer · Amir Molzam Sharifloo
Dependable Evolvable Pervasive Software Engineering,
Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Italy
E-mail: {greenyer|molzam}@elet.polimi.it

Maxime Cordy · Patrick Heyman
PReCISE Research Center,
University of Namur, Belgium
E-mail: {mcr|phe}@info.fundp.ac.be

additional complexity which can cause inconsistencies

and offset the economies of scale promised by product-

line engineering. Engineers thus need intuitive, yet pre-

cise means for specifying requirements and require tools

for automatically detecting inconsistencies within these

requirements. In recent work, we proposed a technique

for the scenario-based specification of interactions in

product lines by a combination of Modal Sequence Di-

agrams and Feature Diagrams. Furthermore, we elabo-

rated an efficient consistency-checking technique based

on a dedicated model-checking approach especially tai-

lored for product lines. In this paper, we report on fur-

ther evaluations that underline significant performance

benefits of our approach. We describe further optimiza-

tions and detail on how we encode the consistency-

checking problem for a model-checker.

Keywords scenario-based specification; product lines;

feature compositions; consistency

1 Introduction

Modern software-intensive systems in areas like trans-

portation or manufacturing, but also information sys-

tems, typically consist of many components that pro-

vide functions by their interaction. These interactions

are sometimes safety-, security-, or business-critical and

must satisfy complex protocol specifications.

Moreover, often today not only a single software

product, but a whole product line, i.e., many variants of

a product, must be developed. Doing this individually

is often impractical, so the goal of product line engineer-

ing [28] is to consider all the variants together through-

out the whole development process. One widespread ap-

proach to organize a product line is to capture the sets

2 Joel Greenyer et al.

of components and functions that may or may not be

present in different variants into features.

Creating a precise specification of a product line,

however, is a major requirements engineering challenge.

Not only complex interactions and many product vari-

ants must be specified, but the behavioral requirements

usually induce dependencies and conflicts among fea-

tures. Consequently, the requirements have to be care-

fully revised to ensure that the features can be consis-

tently combined. If inconsistencies remain undetected,

desired product variants may not be realizable without

late, and thus costly, iterations.

As an example we consider a simplified specification

of an autonomous rail vehicle, inspired by the RailCab

project at the University of Paderborn1. The RailCab

track system is divided in sections. For every variant of

the system we specify that the vehicles, called RailCabs,

must request a switch controller the permission to enter

a switch. The switch controller must then acknowledge

or deny such a request. Let us now consider different

variants. In one, the switch controller allows only one

RailCab to pass at a time. In another variant, two Rail-

Cabs shall be able to coordinate for a joint entry. There

shall be also a third variant where both functions are

present. However, suppose that the requirements for the

joint entry strictly require the switch control to grant

two RailCabs the permission to enter, but the blocking

feature allows this under no circumstances. In this case,

the product line specification is inconsistent.

We propose a scenario-based approach for the in-

tuitive, but precise specification of the interaction be-

havior of components in product lines. We also present

a novel, efficient approach for checking the consistency

of such product line specifications via model checking.

Our approach is based on specifying product lines by a

combination of Modal Sequence Diagrams (MSDs) and

feature diagrams [24,30].

MSDs are a flexible variant of Live Sequence Charts

(LSCs) [11], proposed by Harel and Maoz [19]. They are

an intuitive, visual language for specifying sequences of

messages that may, must, or must not occur in a sys-

tem. The advantage of this approach is that it allows

the requirements engineers to focus on the requirements

during one particular scenario in the system at a time.

This is a natural way to conceive and communicate re-

quirements. Moreover, the behavioral aspects can be

specified separately for each feature. For a particular

product, the overall specification can then be composed

by simply forming the union of the MSDs correspond-

ing to the selected features. Thus, no elaborate feature

composition mechanisms are required.

1 Neue Bahntechnik Paderborn/RailCab, http:
//www-nbp.upb.de

In a scenario-based approach, however, contradic-

tions among the different scenarios may be easily in-

troduced. We therefore elaborated a novel technique

for the efficient consistency checking of the specifica-

tions for all the variants in a product line. Inspired by

an earlier approach by Harel et al. [18], we formulate

the consistency checking problem as a model-checking

problem. The novelties that we introduce are to (1) re-

late the MSDs to the features they belong to, (2) con-

sider the constraints that determine the valid feature

combinations as expressed in a feature diagram (see

Section 2.1).

Then, we employ a recently developed dedicated

model-checking technique for product lines [7,8], which

is capable of checking properties for many product vari-

ants at once. This approach is generally much more effi-

cient than the alternative “brute force” approach, called

the enumarative approach, which consists in checking

each individual product’s model separately. This is be-

cause costly multiple verifications of “common” behav-

ior between the products are now avoided. If the specifi-

cation is inconsistent, the model checking will generate

counterexamples, which support the engineer in under-

standing the inconsistencies among the MSDs of dif-

ferent features. Here another benefit of the dedicated

model-checking approach is that it presents concisely

to the engineer the combinations of features that con-

tain a particular contradiction. If the MSD specification

is consistent, our technique can even help the require-

ments engineer in refining the specification so that a

state-based implementation for the components can be

derived for every product. The latter capability, how-

ever, remains an outlook of this paper.

To illustrate the applicability of our approach, we

developed a tool that allows one to model the variabil-

ity and the behavior of a product line in the form of

a feature diagram and a set of MSDs. Then, it trans-

forms these models into a NuSMV model. NuSMV is

an industry-strength symbolic model checker that was

recently extended with efficient algorithms for product

line verification [7]. The key idea of these algorithms is

to introduce one Boolean variable per feature, and to as-

sociate the effect of each feature with the corresponding

variable. Thanks to that information, the algorithms

check only once the bevahiors that are common among

multiple products. This leads to improvements in effi-

ciency.

However, NuSMV is a symbolic model checker, and

its efficiency highly depends on the number of vari-

ables. Therefore, the dedicated algorithms may not al-

ways perform better than an individual verification of

each variant, which does not require the introduction

of additional variables. In our previous work [15], we

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 3

performed a series of experiments that showed that

the dedicated approach outperforms the enumerative

approach in most cases, but not always. On the ba-

sis of the experiments performed, however, we could

only speculate why in certain cases the enumerative ap-

proach performed better.

In this paper, we extend previous work [15]. The

contribution is the following

1. Extended evaluation (Section 5.3). We perform

further experiments with the object of answering

the open question about when exactly the dedicated

approach performs better than the enumerative one.

For this purpose, we check further technical exam-

ples that we can scale systematically in the number

of features, product, and scenarios. The results al-

low us to revise our previous conclusions and infer

a set of factors that affect the performance.

2. Encoding scenarios and features in NuSMV

(Sections 4.1 and 4.2). We explain the principles of

our transformation from MSDs to the input for the

NuSMV model-checker, as well as how we encode

the dependencies between features into the resulting

NuSMV model. Of particular interest here is how

we used the NuSMV language constructs to encode

the dependencies between MSDs and features in an

efficient way.

3. Optimization of the encoding (Sections 4.2 and

4.3). We explain optimizations in our encoding from

MSDs and feature diagrams to the input for the

NuSMV model-checker that further increase the per-

formance benefits of the dedicated model-checking

approach.

Moreover, we included new foundations that are pre-

requisites for understanding the new contributions, and

are thus necessary for this paper to be self-contained

(Section 2.4). We briefly present NuSMV’s input lan-

guage. We also overview the principles of symbolic model

checking algorithms as they are implemented in NuSMV.

Finally, we added a brief discussion of very recent re-

lated work.

The paper is structured as follows. We introduce the

foundations in Sect. 2 and present our scenario-based

product line specification approach in Sect. 3. We then

explain the consistency checking technique in Sect. 4.

In Sect. 5, we report the evaluation of our approach and

discuss the related work in Sect. 6. Last, we conclude

and provide an outlook in Sect. 7.

2 Foundations

Our approach relies on feature diagrams and MSDs as

well as a behavioral modeling and model-checking tech-

�����������

	��
��
������
��
���������

�����������

	��
��
������
������

�����������

�������
������
�������

�����������

�����������
�����������

���������������

�������

Legend:
a a= And = Or = Optional

Fig. 1 The feature diagram for the RailCab example

nique for product lines. This section briefly recalls these

concepts.

2.1 Representing Variability with Feature Diagrams

A popular approach to describe commonality and vari-

ability in product lines is to use feature diagrams [24]. A

feature diagram is essentially a hierarchical decomposi-

tion of features. Nodes in the diagram are features and

edges specify how features are decomposed into child

features. A parent-child relationship can have differ-

ent types, which constrain the valid combinations of

features that can make up a product. The usual de-

composition types are AND, OR, and XOR. An AND

decomposition means that when the parent feature is

present in the product, all its children must be present

as well except those explicitly labelled as optional2. An

OR (resp. XOR) relationship implies that at least (resp.

exactly) one child feature must be present when the par-

ent feature is. There also exist cross-tree relationships

among the features: the presence of one feature may

require or exclude the presence of another feature. Ad-

ditionally, we can define arbitrary Boolean constraints

over the set of features. We stick to the formal seman-

tics extensively defined in [30].

Figure 1 shows the feature diagram of our RailCab

example. The root feature RailCab is always mandatory.

It has two compulsory child features, namely Merging
switch policy and Merging switch registration. The for-

mer has two additional child features with an OR re-

lationship. Altogether, the diagram thus defines three

product variants.

2.2 Scenario-Based Modeling with MSDs

MSDs were proposed by Harel and Maoz as a formal in-

terpretation of UML sequence diagrams, based on the

concepts of LSCs [19]. In the following, we explain the

2 Optional features are not used in the example appearing
in this paper

4 Joel Greenyer et al.

basics of MSDs using our running example, and detail

the interpretation of MSDs that we consider in our ap-

proach.

An MSD specification consists of a set of MSDs. An

MSD can be existential or universal. Existential dia-

grams specify sequences of events that must be possi-

ble to occur in the system. Universal diagrams specify

requirements that must be satisfied by all sequences of

events that occur. In this paper, we focus on universal

MSDs.be extended to support existential MSDs.

Each lifeline in an MSD represents an object in an

object system that consists of environment objects and

system objects. The set of system objects is called the

system; the set of environment objects is called the en-

vironment.

The objects can interchange messages. A message

has a name and a sending and receiving object. In this

paper, we consider only synchronous messages where

the sending and receiving of the message is a single

event. Our approach can, however, be easily extended

to support asynchronous communication. We call the

sending and receiving of a message a message event or

simply event.

The messages in a universal MSD can have a tem-

perature and an execution kind. The temperature can

be either hot or cold ; the execution kind can be either

monitored or executed. The temperature and execution

kind encode safety resp. liveness properties for message

events intuitively as follows. If during the scenario mod-

eled by an MSD we reach a monitored messages, this

means that this event may happen. If instead we reach

an executed message, this event must eventually hap-

pen (liveness). If we reach a cold message, this message

may be violated. A violation is when an event occurs

that is also represented by another message in the same

MSD that is expected to occur at another time in the

scenario, i.e., before or after. Events that are not rep-

resented by a message in the MSD do not lead to vio-

lations (they are ignored). If we reach a hot message,

no violation must occur. Violations of cold messages

lead to the termination or “reset” of the scenario. Fig-

ure 2 shows the intuitive semantics of the temperature

and execution kind of messages. A more specific def-

inition of the semantics is given in the following. For

more background and examples of using the message

modalities, we refer to previous work on MSDs [14, 19]

and LSCs [21]. Note that our interpretation of the mes-

sage temperature and execution kind is more versatile

than the original definition [19], where the temperature

alone reflects both the safety and liveness aspects.

More precisely, the semantics of these messages is as

follows: An event can be unified with a message in an

MSD iff (1) the event name equals the message name

cold
(can be “violated”)

hot
(must not be “violated”)

monitored
(may happen)

executed
(must happen)

c,m

c,e

h,m

h,e

message
semantics:

Fig. 2 The intuitive semantics of the message temperature
and execution kind

and (2) the sending (resp. receiving) lifelines of the mes-

sage represent the objects sending (resp. receiving) the

event. When an event occurs in the system that can be

unified with the first message in an MSD, an active copy

of the MSD or active MSD is created. (We consider

that an MSD has only one first message.) As further

events occur that can be unified with the subsequent

messages in the diagram, the active MSD progresses.

This progress is captured by the cut, which marks for

every lifeline the locations where the messages are at-

tached that were unified with the message events. If the

cut reaches the end of an active MSD, the active copy

is terminated.

If the cut is in front of a message on its sending and

receiving lifeline, the message is enabled. If a hot mes-

sage is enabled, the cut is also hot. Otherwise the cut is

cold. Similarly, if an executed message is enabled, the

cut is also executed. Otherwise the cut is monitored. We

also call an enabled executed message an active mes-

sage.

A safety violation occurs iff in a hot cut, there is

a message event that can be unified with a message in

the MSD that is not currently enabled. If this happens

in a cold cut, it is called a cold violation. Safety vio-

lations must never happen, while cold violations may

occur and result in terminating the active copy of the

MSD (see also Harel and Marelly [21, Sect. 5]). If the

cut is executed, this means that the active MSD must

progress and it is a liveness violation if an active MSD

never terminates or progresses to a monitored cut.

Figure 3 shows an MSD. Cold messages are blue, hot

messages are red; monitored messages have a dashed

arrow, executed messages have a solid arrow. For clar-

ity, the temperature and execution kind are shown by

labels (h/c,m/e). The dashed horizontal lines in the

MSD RC1RequestEnterAtEndOfTrackSection also show

the reachable cuts and their temperature and execu-

tion kind. Intuitively, this MSD expresses the following

requirements. We consider a scenario where two Rail-

Cabs move along their current track sections and ap-

proach a merging switch (see the sketch in Fig. 3. At

some point the RailCab rc1 is notified that it reaches

the end of the current track section. This is modeled as

the message endOfTS sent between the environment

and the RailCab rc1. Now the RailCab rc1 must send

requestEnter to the switch control sc, which must

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 5

reply with enterAllowed. These two messages must

be sent before the RailCab reaches a point where it is

possible for the last time to safely break before entering

the switch (modeled by the message lastBrake).

rc1

rc2 sc

illustrationendOfTS
lastBreak

endOfTS
lastBreak

enterNext

enterNext

enterNext

endOfTS

env:Environment rc1:RailCab sc:MergingSwitchControl

requestEnter

enterAllowed(true/talse)

MSD RC1RequestEnterAtEndOfTrackSection

lastBrake

1. (h,e)

2. (h,e)

3. (c,m)

inactive

h,e

h,e
c/m

c/m

Fig. 3 The MSD RC1RequestEnterAtEndOfTrackSection from
the RailCab example

We assume that the system is always fast enough to

send any finite number of messages before the next envi-

ronment event occurs. An infinite sequence of message

events is called a run of the system and its environ-

ment. A run satisfies an MSD specification consisting

of a set of universal MSDs if it does not lead to a safety

or liveness violation in any MSD. (Multiple MSDs may

be active at the same time.) We say that an MSD spec-

ification is consistent or realizable iff it is possible for

the system objects to react to every possible sequence

of environment events so that the resulting run satisfies

the MSD specification3.

There are two interpretations for MSDs. The in-

variant interpretation allows for multiple active copies

of the same MSD. This may happen if the initial se-

quence of messages occurs again later in the MSD. In

3 Note that we use the terms consistency and realizability
synonymously, but that they are used differently in litera-
ture. In Abadi et al. [2], a specification is consistent iff there
exist a system and some (friendly) environment that com-
posed can satisfy the specification. Instead, a specification is
realizable iff there exists a system that composed with any
environment can satisfy the specification. The definition of
consistency in Harel et. al [16] instead also takes into account
that the system must react to all possible sequences of envi-
ronment events, which corresponds to realizability in Abadi
et al. [2]. Realizability in Harel et. al [16] especially refers to
the fact that there exists a distributed implementation for the
system objects (one finite-state controller per system object)
that implements the specification. (They show that their form
of realizability and consistency are equivalent.) In Bontemps
et al. [4] (see especially the discussion in [4, Sect. 5.2.1]), the
consistency condition by Abadi et al. [2] is called satisfiabil-
ity. We stick to the terminology used in the LSC/MSD-related
literature, based on Harel et al. and Bontemps et al.

our approach, however, we only support the iterative

interpretation, where no second active copy is allowed,

which makes a formal analysis easier.

Messages can also have parameters of certain types.

A message event then carries according values for each

parameter. Here we only consider messages that can

have a Boolean parameter. A message in an MSD can

specify either a literal value for the message, i.e., true

or false, or it can specify no particular value. Then we

write true/false. In the parametrized case, an event can

be unified with a message in the MSD if the message in

the MSD specifies no value or a value that equals the

value carried by the event.

An MSD can also contain forbidden messages in a

designated fragment labeled forbidden, appended after

the actual end of the MSD. Forbidden messages have a

temperature, i.e., they can be hot or cold. While there

exists an active copy of an MSD, no events that can be

unified with a hot forbidden message specified in this

MSD are allowed to occur, otherwise this is also a safety

violation. A message event that can be unified with a

cold forbidden message is allowed, but leads to a cold

violation.

Harel and Marelly defined an executable semantics

for the LSCs, called the play-out algorithm [20], that

was later also defined for MSDs [26]. The basic prin-

ciple is that if an environment event occurs and this

results in one or more active MSDs with active (en-

abled executed) system messages, then the algorithm

non-deterministically chooses to send a corresponding

message if that will not lead to a safety violation in an-

other active MSD. The algorithm will repeat sending

active system messages until no active MSDs or only

active MSDs with monitored cuts remain. Then the al-

gorithm will wait for the next environment event, etc.

If the MSD specification is inconsistent, this implies

that there exists a sequence of environment events that

will lead the play-out algorithm to a situation where

it is “stuck”, i.e., there are active messages, but they

would all lead to safety violations. Such a situation can,

however, also occur if the specification is consistent.

That is because the play-out algorithm will often make

non-deterministic choices without “looking ahead” if

they guarantee it not to get stuck later.

We call the possible executions of the play-out algo-

rithm also the play-out semantics of an MSD specifica-

tion. The valid executions of the play-out algorithm are

usually only a subset of all the runs that satisfy an MSD

specification, which we also call its general semantics.

6 Joel Greenyer et al.

s00 s10

s01 s11

f

f

!f

!f

Fig. 4 A featured transition system.

2.3 Efficient Model-Checking of Product Lines

Our checking procedure is founded on Featured Tran-

sition System (FTS), a formalism recently introduced

by Classen et al. for modeling the behavior of prod-

uct lines [7, 8]. In a nutshell, an FTS is a usual transi-

tion system where transitions are annotated with con-

straints over a set of features from an attached feature

model. A product can execute a transition iff its set

of features satisfies the associated constraints. Figure 4

depicts a small FTS composed of four states and six

transitions. Among the latter, two are available for all

the products, i.e., s01 → s00 and s10 → s11. The tran-

sitions s00 → s10 s11 → s01 are executable by the prod-

ucts equipped with the feature f. On the contrary, the

last two transitions are available for the products that

do not have this feature. Supported by efficient algo-

rithms that are able to check common behaviors only

once [7–9], FTS is a promising approach for verifying

product lines.

The key advantage of FTS is the inclusion of an

explicit notion of feature. Thanks to that, FTS-based

algorithms are able to identify all the product variants

that do not satisfy an intended property. In our context,

we can pinpoint exactly the combinations of features for

which the combination of MSDs is inconsistent.

As a fundamental formalism, FTS can be hardly

used by engineers. It is often preferable to use a high-

level language on top of it. To that aim, Classen et al. [7]

recently extended NuSMV [5], an industry-strength

symbolic model-checker, with efficient FTS-based algo-

rithms. We further use this extension as a tool to verify

the consistency of MSDs.

2.4 The SMV language

NuSMV’s input language is called SMV (Symbolic Mo-

del Verifier). Listing 1 is an example that illustrates the

syntax of SMV. An SMV model consists of the defini-

tion of one or several modules. One module is always

Listing 1 Sample of SMV code

MODULE main
VAR

a: boolean;
b: boolean;
feat: features;

TRANS
(!feat.f -> next(b) != b)
(feat.f -> next(b) = a)

DEFINE
c := a & next(b);

ASSIGN every next state
init(a) := FALSE;
init(b) := {FALSE,TRUE};
next(a) := case (b) : FALSE;

(!b) : TRUE;
esac;

the main module; the others can be regarded as a means

of structuring the code. In this paper, we will consider

only the main module as well as an additional module

to declare features. Within the main module, one may

declare variables over finite domains in a VAR section.

In our example, two Boolean variables named a and b

are declared.

The number of variables and their respective types

define the state space of the model, which is equivalent

to the cartesian product of the set of values of all the

variables. In the above example, there are four different

states, each one corresponding to a distinct couple of

values for a and b. Thereby, a transition relation is de-

fined according to the synchronous evolution of all the

variables. In the absence of additional specifications,

the initial state (i.e., the initial value of each variable)

is chosen non-deterministically, and any transitions be-

tween the states (that is, any change in the variables’

value) may occur.

One may restrain the possible initial values of a vari-

able in a second section named ASSIGN. The above

code specifies that a is initially false, and that b can

take any value. SMV also provides two constructs to

restrict the set of authorized transitions. The first is

also part of the ASSIGN section, and allows one to

explicitly define which next values are authorized with

respect to the other variables; for instance, the code

specifies that the next value of a is the opposite of the

current value of b. The second construct is a new section

called TRANS. Within it, one may specify invariants

that every reachable state must satisfy. For example,

our sample code specifies that the next value of b must

always be different from its current value. As an alter-

native to the above, one can define this restriction on

b’s values by using the next construct. However, any

Boolean formula over the variables and their next value

can occur in the TRANS section. This construct is thus

more appropriate to specify complex logical dependen-

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 7

cies between variables. A transition relation can specify

many possible values for multiple variables from which

one alternative can be chosen non-deterministically. In

case of model checking, this means that all possibilities

must be explored.

Finally, NuSMV supports the definition of so-called

derived variables. These act as abbreviations for Boo-

lean formulae defined over the other variables, and have

thus the sole purpose of increasing readability. They

must be defined in a DEFINE section. For example, the

derived variable c receives the value true if and only if

a is true and the value of b in the next state is true as

well. Derived variables do not increase the size of the

state space since their value can be derived from the

other variables.

Classen et al. [7] recently extended NuSMV to sup-

port the declaration of features and the specification of

their effects on a model’s behaviour. Features are de-

clared as Boolean variables in a separate module named

features. This allows the extended NuSMV to distin-

guish them from the other variables. The value of a

feature is initially chosen non-deterministically, and re-

mains constant over the whole execution. Then, one

may use these variables in the ASSIGN and TRANS
sections. Our sample code specifies that for the prod-

ucts having the feature f, the next value of b is always

the current value of a; for the other products, it is de-

termined as described above. Here, the variable feat
is used as a means of accessing the variables of the

features module, including the feature f.

The SMV code of Listing 1 is equivalent to the

FTS shown in Figure 4. More generally, any FTS can

be translated into an SMV model with features, and

vice-versa [7]. On a side note, Path and Ryan pro-

posed fSMV as a language to describe modularly the

effect of features [27]. fSMV offers more user-friendly

constructs than pure SMV with features, and conse-

quently makes the modelling task easier for humans.

However, our approach relies on fully-automated trans-

formations. For all those reasons, we will directly pro-

duce SMV code. For checking a resulting SMV model,

we will use NuSMV as extended by Classen et al. [7].

As a symbolic model checker, NuSMV encodes states,

transitions, and features as Boolean formulae. The model

checking problem is then reduced to the manipulation

of data structures that represent such formulae, viz. Bi-

nary Decision Diagrams (BDDs). Symbolic model check-

ing is one of the most prominent answer to the state ex-

plosion problem, which is the major drawback of model

checking. The use of symbolic data structures like BDDs

increases the scalability of this verification technique.

However, the efficiency of this representation depends

on two factors: (1) the number of variables, and (2) the

ordering of the variables. In Section 5, we will see how

these two factors impact on our consistency checking

procedure.

3 Scenario-Based Specification of Product

Lines

In the following, we describe our approach for the scenario-

based specification of product lines by a combination of

feature diagrams and MSDs. The advantage of our ap-

proach is that it allows the requirements engineer to

precisely specify the feature-specific behavioral aspects

of the system separately for each feature. We call the

specifications created for each feature feature specifica-

tions. Moreover, the MSDs allow for a seamless compo-

sition of a complete specification for a particular prod-

uct variant without requiring an additional composition

or “weaving” mechanism. Also (as explained in Sect. 5

in more detail), the presented modeling concepts can

be entirely realized based on UML and lightweight ex-

tensions, so existing modeling tools can be reused for

our specification approach.

First, we propose that the features and their valid

combinations are modeled as feature diagrams. See Fig. 1,

which showed the feature diagram of our RailCab ex-

ample.

A feature can be associated with a feature specifica-

tion, which consists of an optional informal description

of the requirements and a package that contains the

formal specification. The structure of such a package

is shown in Fig. 5. The package contains classes and a

collaboration. The nodes in the collaboration diagram,

called roles, describe the objects that are considered

in the specification of the particular feature. Here, the

roles that represent system objects have a rectangular

shape; a role that represents an environment object has

a cloud-like shape. Connectors between the roles show

which objects interchange messages with each other.

The roles are typed over the classes in the package and

operations of these classes describe which messages with

which parameters an instance can receive.

Each collaboration can contain one or multiple MSDs.

Here, the collaboration contains four MSDs that thus

make up the behavioral specification of the feature Merg-
ing switch registration. The MSD RC1RequestEnterAt-
EndOfTrackSection was already introduced in Sect.2.2.

In this feature, due to the symmetry in the example,

the same behavior is again also specified for the second

RailCab in the MSD RC2RequestEnterAtEndOfTrack-
Section. We hide this diagram behind the first here,

because it only differs in the lifeline that refers to the

RailCab rc2 instead of rc1. In the future, we could also

8 Joel Greenyer et al.

MSD RC2RegisterAndUnregister

MSD RC2RequestEnterAtEndOfTrackSection

Feature Merging switch registration:
If a RailCab (rc1 or rc2) approaches the end of the track section and approaches a merging swtich, it must
request the switch control for the permission to enter. The switch control must reply, either allowing or disallowing
the RailCab to enter. The reply must be sent before the RailCab reaches the point where for the last time by
applying the brakes it can be guranteed to halt before entering the switch.
If entering the switch is allowed, the RailCab must register at the switch control before it enters the swtich. When
entering the subsequent track section, the RailCab must unregister from the switch control.

endOfTS

env:Environment rc1:RailCab sc:MergingSwitchControl

requestEnter

enterAllowed(true/talse)

MSD RC1RequestEnterAtEndOfTrackSection

lastBrake

package Merging switch registration

Environment

Merging
SwitchControl

requestEnter()

RailCab

endOfTS()
enterAllowed(
 isAllowed:Boolean)
lastBrake()

Switch
System

Collaboration
Switch System

rc2:RailCab

sc:Merging
SwitchControl

env:Environment

rc1:RailCab

enterNext

env:Environment rc1:RailCab sc:MergingSwitchControl

MSD RC1RegisterAndUnregister

enterAllowed(true)

register

enterNext
unregister

c,m

c,m

c,m

c,m

h,e

h,e

c,m

h,e

h,e

Fig. 5 The specification of the feature Merging switch regis-
tration

imagine richer constructs that allow us to avoid draw-

ing such redundant diagrams, but this shall not be the

focus of this paper.

The two MSDs at the bottom of Fig. 5 say that

the RailCab rc1 resp. rc2 must register at the switch

control after it is granted the permission to enter the

switch and before it effectively enters the switch. Then

it must unregister from the switch control after entering

the next, subsequent track section. Here again, only the

MSD for the first RailCab is shown in the foreground.

The specifications associated with the features Block-
ing switch control and Coordinated switch entry follow

the same structure, so, for brevity, Fig. 6 only shows the

MSDs associated with the features. The behavior of the

feature Blocking switch control is specified by the MSDs

RC1EnterDisallowedWhenSwitchBlocked and RC2Enter-
DisallowedWhenSwitchBlocked. They specify that Rail-

Cab rc1 resp. rc2 must not be allowed to enter after rc2
resp. rc1 was given the permission to enter the track

section and before rc2 resp. rc1 has again unregistered

from the switch, i.e., has left the switch.

Finally, the MSDs RC1CoordinateSwitchEntry and

RC2CoordinateSwitchEntry specify that if the RailCab

rc1 resp. rc2 requests the permission to enter the track

section after the opposite RailCab (rc2 resp. rc1) was

already given the permission to enter, the switch con-

trol can order the RailCabs to coordinate for a joint

MSD RC2CoordinateSwitchEntry

MSD RC2EnterDisallowedWhenSwitchBlocked

enterAllowed(true)

rc1:RailCab rc2:RailCab sc:MergingSwitchControl

unregister

enterAllowed(true)

MSD RC1EnterDisallowedWhenSwitchBlocked

forbidden

<<Feature>>

Blocking switch
control

rc1:RailCab rc2:RailCab sc:MergingSwitchControl

requestEnter

enterAllowed(true)

MSD RC1CoordinateSwitchEntry

coordinateEntry

requestStrategy()

coordinationStrategy()

ackCoordinatedEntry

unregister
forbidden

enterAllowed(true)

<<Feature>>

Coordinated
switch entry

ackCoordinatedEntry

MSD RC1EnterDisallowedWhenSwitchBlocked

(c,m)

(h,e)

h,e

h,e

h,e

h,e

h,e

h,e

c

c,m

c,m

c,m

c,m

h

Fig. 6 The MSDs for the features Blocking switch control and
Coordinated switch entry and the cuts where a safety violation
is inevitable

entry on the switch. To do that, the RailCab request-

ing the permission to enter must ask the other RailCab

for a coordination strategy, in which it prescribes the

time and speed at which they can safely pass the switch

together. We abstract from the details of such a strat-

egy and, for simplicity, we also do not consider that

a RailCab may also deny a proposed strategy. We as-

sume that they must both acknowledge to the switch

control to perform a coordinated entry, and that the

switch control must then allow the requesting RailCab

to enter.

In this example, there is the following inconsistency.

Suppose that the RailCab rc2 was given the permission

to enter the track section and has not yet left the track

section and unregistered from it. This means that there

is an active copy of the MSD RC1EnterDisallowedWhen-
SwitchBlocked with the cut as illustrated in Fig. 6. At

the same time, if the RailCab rc1 requests the permis-

sion to enter the switch, this will eventually lead to a sit-

uation where in an active copy of RC1CoordinateSwitch-
Entry the hot and executed message enterAllowed-
(true) is enabled, as also shown in Fig. 6. Because

the message enterAllowed(true) is forbidden in

the first MSD, it would be a safety violation to send

this message. But not sending this message at all would

constitute a liveness violation, because the message is

executed in the second MSD. The system could also try

to delay sending this message until the second RailCab

unregisters from the switch control. Then, however, the

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 9

environment could meanwhile send lastBrake, which

would violate the MSD RC1RequestEnterAtEndOfTrack-
Section, because it would also not have progressed be-

yond the hot enterAllowed message.

The inconsistency could be resolved for example by

changing the feature diagram and turning the OR re-

lationship between the child features of Merging switch
policy into an XOR relationship. This would then ex-

clude the contradicting combination of features. Also

the MSDs could be changed. Changing the hot message

enterAllowed in RC1CoordinateSwitchEntry to a cold

message would for example resolve the problem, but

then a coordinated entry would never be allowed. Alter-

natively, we could add a cold forbidden message to the

MSD RC1EnterDisallowedWhenSwitchBlocked so that a

cold violation terminates the diagram if the switch con-

trol asks for a coordinated entry of a RailCab.

The modeling technique presented here allows us to

employ a simple mechanism for composing the specifi-

cation of a product from its single feature specifications.

Since every feature specification is a package, we can

simply employ the package merge mechanism defined in

UML2 [1, Sect. 7.3.41] to merge the packages and their

contents into a consolidated product specification pack-

age. Essentially, package merge merges the contents of

one or multiple packages into another package. In this

process, elements with the same name in the merged

packages are mapped to one element with that name

in the merging package. This applies to classifiers, such

as classes and collaborations, but also operations. The

MSDs can simply be composed by forming the union of

all feature’s MSDs in the consolidated product specifi-

cation package.

4 Consistency Checking Scenario-Based

Product Line Specifications

We propose an automated method for discovering in-

consistencies in MSD product line specifications that

are modeled as described above. For this purpose, we

map the specification to an SMV model that encodes

the play-out behavior of every product. I.e., for each

product, the model describes all the possible reactions

of the play-out algorithm to every possible sequence of

environment events. We then verify that, in every prod-

uct variant, the system can always find an admissible

sequence of reactions to an environment event.

In the following, we describe the mapping from MSD

specifications to an SMV model by a small example in

Sect. 4.1. In Sect. 4.2, we explain how this encoding

changes for product line specifications, when the MSDs

belong to different features in a feature diagram. We

then explain in Sect. 4.3 how to check the consistency of

the MSD product line specification by checking certain

properties for the SMV model. Last, in Sect. 4.4, we

discuss some limitation of our approach and how these

limitations could be overcome in the future.

4.1 From MSDs to SMV

The encoding from MSDs to SMV is inspired by a sim-

ilar mapping from LSCs to SMV used in smart play-

out [17]. The main difference is that we also incorpo-

rate feature models in this mapping and that we regard

MSDs instead of LSCs. MSDs are different from LSCs

in that the pre-chart construct in universal LSCs [21]

is replaced with the execution kind of messages (see

Sect. 2.2).

In more detail, our mapping is different from the

smart play-out encoding in the following way. The smart

play-out encoding, the variable changes in each step of

the play-out algorithm are encoded in a transition re-

lation. This transition relation, however, becomes very

complex when we associate MSDs with features. Our

basic idea for this is that we prohibit the activation of

MSDs if they belong to features that are not present

in a currently regarded product. This behavior can be

more easily encoded if we make use of NuSMV’s as-

sign statements to model the activation of MSDs and

the progress of cuts. But we also define a transition re-

lation to model the next possible events that can be

chosen by the system and the environment. Using the

transition relation for this purpose is beneficial because

it models the non-deterministic choices of the system

and the environment naturally.

To realize the combination of assignment expres-

sions and a transition relation, we make heavy use of

derived variables that from the current cuts of active

MSDs derive information about, for example, whether

certain events shall be executed by the system or are

forbidden and must therefore not be executed. These

derived variables allow for the formulation of a concise

transition relation, which supports a better readability

of the generated model.

In the following, we explain the MSD-to-SMV map-

ping by the simplified RailCab example specification in

Fig. 7. The MSDs provide a minimal example of two

MSDs that are triggered consecutively and synchronize

over two message events. The feature diagram defines

three products that have to fulfill either or both of the

MSDs. A product specification just consisting of the

MSD REPLYBEFORELB may not be meaningful, but

the goal here is just to explain the mapping by the help

of a small example.

We first explain the mapping for MSD specification

without regarding the feature diagram. The listings be-

10 Joel Greenyer et al.

endOfTS

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed(t/f)

REQENTER

lastBreak

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed(t/f)

REPLYBEFORELB

<<Feature>>

ReplyBefore
LBFeature

<<Feature>>

ReqEnter
Feature

<<BaseFeature>>

BaseFeature

<<Feature>>

ReqEnter
Feature

<<Feature>>

ReplyBefore
LBFeature

Fig. 7 Two simple MSDs from the RailCab example

low show the variable definitions (Listing 2), the defini-

tion of the derived variables (Listing 3-6), the definition

of assignments for certain variables (Listing 7), and the

definition of the transition relation (Listing 8). We ex-

plain the constituents of the SMV model and highlight

corresponding to which syntactic elements in the MSD

specification these constituents are created.

As shown in Listing 2, the model consists of one

main module and the following variable definitions (in

the VAR section): First, once for each specification, the

Boolean variable safetyViolation is created. This vari-

able is set to true when an event occurs that leads

to a safety violation. Second, once for each specifica-

tion, the variable event is created. This variable has an

enumerated type where the symbols hidden event and

safetyViolationInevitable are created once per MSD spec-

ification. Additionally, so-called message-symbols of the

kind 〈sending-object-name〉 〈receiving-object-name〉 〈mes-
sage-name〉 are created for each message in the MSD

specification. This event variable represents the event

executed in a current step. As explained shortly, in ad-

dition to a message event, the value safetyViolationIn-
evitable represents the choice of the system if all active

events are also currently forbidden. hidden event is the

event chosen if one or more active MSDs reach their

terminal cut and need to be terminated.

In the remainder of the VAR section, the lifeline

variables are created for each lifeline in each MSD in the

specification. They have the form 〈MSD-name〉 〈object-
name〉, where object-name is the name of the object rep-

resented by the lifeline. These variables are integer vari-

ables bounded to the number of locations (points where

sending and receiving messages are attached) per life-

line. More specifically, the bounds for lifeline variables

are 0 . . . i in case the lifeline is a sending or receiving

lifeline of the first message and 0 . . . i + 1 otherwise,

where i is the number of locations per lifeline. Lifelines

that are not participating in the sending and receiving

of the first message thus have an extra location.

The reason for this is that we can now clearly dis-

tinguish that the value 0 for all lifeline variables means

that the MSD is inactive and 1 for all lifelines means

that an event has just occurred that can be unified with

the first message. This allows us later to more easily en-

code two cases of cold violations: (1) cold violation by

the first event of an MSD, which corresponds to the ter-

mination and immediate reactivation of an MSD, set-

ting all lifeline variables to 1; (2) cold violation by an-

other event, which corresponds to the termination of

the MSD, setting all lifeline variables to 0.

Listing 2 VAR section of the SMV model created for the
MSDs REQENTER and REPLYBEFORELB

MODULE main

VAR
safetyViolation: boolean;

event: { hidden_Event,
safetyViolationInevitable,
env_rc_endOfTS,
rc_next_requestEnter,
next_rc_enterAllowed,
env_rc_lastBreak };

REQENTER_env: 0 .. 1;
REQENTER_rc: 0 .. 3;
REQENTER_next: 0 .. 3;

REPLYBEFORELB_env: 0 .. 2;
REPLYBEFORELB_rc: 0 .. 3;
REPLYBEFORELB_next: 0 .. 2;

Listing 3 shows some of the derived variables that

are created for the above MSD specification. First, there

is the derived variable environmentMessageOccurred, which

is created once for per MSD specification. It is true if

the current step is taken due to an environment event.

The value expression (after the =) is a disjunction with

expressions event = 〈event-name〉, where 〈event-name〉
in the following is a string of the form 〈sending-object-
name〉 〈receiving-object-name〉 〈message-name〉. The con-

stituent expressions event = 〈event-name〉 are created in

an n-to-1 mapping from all environment messages of all

MSDs in the specification.

Next, there is the derived variable active system, cre-

ated once per MSD specification, which is true if there is

currently an active message in at least one active MSD.

It is computed from variables of the form active 〈event-
name〉, which are created in an n-to-1 mapping from

messages of all MSDs in the specification. These vari-

ables are true if the respective event is enabled in at

least one MSD.

The variables active 〈event-name〉 are calculated based

on yet another kind of derived variable of the form

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 11

active 〈MSD-name〉 〈event-name〉, which are created for

every message in every MSD. These variables are true if

the respective event is enabled in the respective MSD.

This is calculated based on the lifeline variables of the

sending and receiving lifeline. So, for example active REQ-
ENTER next rc enterAllowed is true if the lifeline vari-

ables REQENTER next and REQENTER rc are both equal

to two.

Listing 3 DEFINE section (1/4) of the SMV model created
for the MSDs REQENTER and REPLYBEFORELB

DEFINE

environmentMessageOccured :=
event = env_rc_endOfTS |
event = env_rc_lastBreak;

active_system :=
active_rc_next_requestEnter |
active_next_rc_enterAllowed;

active_next_rc_enterAllowed :=
active_REPLYBEFORELB_next_rc_enterAllowed |
active_REQENTER_next_rc_enterAllowed;

active_REQENTER_rc_next_requestEnter :=
REQENTER_rc = 1 & REQENTER_next = 1;

active_rc_next_requestEnter :=
active_REQENTER_rc_next_requestEnter;

active_REQENTER_next_rc_enterAllowed :=
REQENTER_next = 2 & REQENTER_rc = 2;

Listing 4 shows the derived variable hiddenEvent en-
abled, which is created once per MSD specification. This

variable is true if the terminal cut of at least one active

MSD is reached. Its value is computed from variables

of the form hiddenEvent enabled 〈MSD-name〉 that are

created per MSD. These are again computed from vari-

ables final cut reached 〈MSD-name〉, created per MSD,

that is true if the cut reached the last location on all
lifelines.

The variable hiddenEvent enabled is not computed

directly from the variables final cut reached 〈MSD-na-
me〉 in order to keep the mapping extensible, for exam-

ple to support conditions [21] in the future, which are,

however, not covered in the scope of this paper.

Listing 4 DEFINE section (2/4) of the SMV model created
for the MSDs REQENTER and REPLYBEFORELB

hiddenEvent_enabled :=
hiddenEvent_enabled_REQENTER |
hiddenEvent_enabled_REPLYBEFORELB;

final_cut_reached_REQENTER :=
REQENTER_env = 1 &
REQENTER_rc = 3 &
REQENTER_next = 3;

hiddenEvent_enabled_REQENTER :=
final_cut_reached_REQENTER;

Listing 5 shows derived variables that encode whether

certain events are enabled or forbidden. First, derived

variables of the form hotEventEnabled 〈MSD-name〉 are

created for each MSD in the specification. The expres-

sion forming the disjunction value expression are cre-

ated for each hot message in the respective MSD, so

that the derived variable is true in cuts where there is

a hot message enabled in the MSD.

Similar to the active 〈MSD-name〉 〈event-name〉 vari-

ables explained above, enabled 〈MSD-name〉 〈event-na-
me〉 variables are created for each message in each MSD.

Together with the variables hotEventEnabled 〈MSD-na-
me〉, they are the basis for calculating the values of the

derived variables of the form forbidden 〈MSD-name〉 -
〈event-name〉. Based on these, the derived variables for-
bidden 〈event-name〉 are created for all messages in all

MSDs to aggregate the information of whether certain

message events are forbidden to occur in the current

configuration of cuts.

Listing 5 DEFINE section (3/4) of the SMV model created
for the MSDs REQENTER and REPLYBEFORELB

hotEventEnabled_REQENTER :=
REQENTER_rc = 1 &

REQENTER_next = 1 |
REQENTER_next = 2 &

REQENTER_rc = 2;

enabled_REQENTER_env_rc_endOfTS :=
inactive_cut_REQENTER;

inactive_cut_REQENTER :=
REQENTER_env = 0 &
REQENTER_rc = 0 &
REQENTER_next = 0;

enabled_REQENTER_rc_next_requestEnter :=
REQENTER_rc = 1 & REQENTER_next = 1;

enabled_REQENTER_next_rc_enterAllowed :=
REQENTER_next = 2 & REQENTER_rc = 2;

forbidden_rc_next_requestEnter :=
forbidden_REPLYBEFORELB_rc_next_requestEnter |
forbidden_REQENTER_rc_next_requestEnter;

forbidden_next_rc_enterAllowed :=
forbidden_REPLYBEFORELB_next_rc_enterAllowed |
forbidden_REQENTER_next_rc_enterAllowed;

forbidden_env_rc_endOfTS :=
forbidden_REQENTER_env_rc_endOfTS;

forbidden_REQENTER_env_rc_endOfTS :=
hotEventEnabled_REQENTER &
!enabled_REQENTER_env_rc_endOfTS;

forbidden_REQENTER_rc_next_requestEnter :=
hotEventEnabled_REQENTER &
!enabled_REQENTER_rc_next_requestEnter;

forbidden_REQENTER_next_rc_enterAllowed :=
hotEventEnabled_REQENTER &
!enabled_REQENTER_next_rc_enterAllowed;

Listing 6 shows two further derived variables of the

form violation by init event next 〈MSD-name〉 and vio-
lation by non-init event next 〈MSD-name〉 that are cre-

ated for each MSD. They are true if the next event

leads to a cold violation or safety violation of the MSD,

either by an event unifiable with the first event in the

MSD or by another event. As explained shortly, in the

12 Joel Greenyer et al.

case of a cold violation by the first event, all lifeline

variables for this MSD will be reset to one: in case of a

cold violation by another event, all lifeline variables for

this MSD will be reset to zero.

Note that a range of derived variables that are cre-

ated specifically for the MSD REPLYBEFORELB are

omitted here.

Listing 6 DEFINE section (4/4) of the SMV model created
for the MSDs REQENTER and REPLYBEFORELB

violation_by_init_event_next_REQENTER :=
next(event) = env_rc_endOfTS &
!enabled_REQENTER_env_rc_endOfTS;

violation_by_non-init_event_next_REQENTER :=
next(event) = rc_next_requestEnter &

!enabled_REQENTER_rc_next_requestEnter |
next(event) = next_rc_enterAllowed &

!enabled_REQENTER_next_rc_enterAllowed);

Listing 7 shows some assignment expressions that

are created in the mapping. First, once for every MSD

specification init and next expressions are created for

the variable safetyViolation. The variable is initialized

with zero and is set to true if a violation of an MSD

occurs while it is in a hot cut, otherwise it will remain

false. The constituents of the disjunction that forms

the first case-condition are created for each MSD in the

specification.

Next, an initialization and next assignment expres-

sion is created for each lifeline in every MSD of the spec-

ification. As an example we only show the expressions

created for the lifeline rc in the MSD REQENTER. A

lifeline variables is initialized with zero. In the next ex-

pression, there are several different cases. The first two

case conditions set the lifeline variable to one or zero

if a cold violation occurs by the first event in the MSD

resp. by another event. The third case is the case where

the cut reached the final location for all lifelines of the

MSD. Then the value hidden Event will be selected for

the variable event (as will be explained shortly) and all

lifeline variables will be reset to zero.

The fourth case is where the MSD is inactive an

event occurs that can be unified with the first event,

and thus leads to an activation of the MSD. As ex-

plained above, in this case all lifeline variables must be

set to one. The fifth case represents the progress of the

cut if messages occur that can be unified with subse-

quent enabled messages. Then the lifeline variables is

increased by one. The constituents of the disjunction

that forms the case condition are created for the send-

ing and receiving lifeline of every non-initial message in

every MSD. The last case condition (true) defines that

otherwise, the value of the lifeline variable remains un-

changed.

Listing 7 ASSIGN section of the SMV model created for
the MSDs REQENTER and REPLYBEFORELB

ASSIGN
init(safetyViolation) := FALSE;
next(safetyViolation) := case

hotEventEnabled_REQENTER &
(violation_by_init_event_next_REQENTER |
violation_by_non-init_event_next_REQENTER) |
hotEventEnabled_REPLYBEFORELB &
(violation_by_init_event_next_REPLYBEFORELB |
violation_by_non-init_event_next_REPLYBEFORELB)
: TRUE;

TRUE: safetyViolation;

esac;

init(REQENTER_rc) := 0;
next(REQENTER_rc) := case

violation_by_init_event_next_REQENTER &
!hotEventEnabled_REQENTER: 1;

violation_by_non-init_event_next_REQENTER &
!hotEventEnabled_REQENTER: 0;

final_cut_reached_REQENTER &
next(event) = hidden_Event: 0;

enabled_REQENTER_env_rc_endOfTS &
next(event) = env_rc_endOfTS &
inactive_cut_REQENTER : REQENTER_rc + 1;

enabled_REQENTER_rc_next_requestEnter &
next(event) = rc_next_requestEnter |

next(event) = next_rc_enterAllowed &
enabled_REQENTER_next_rc_enterAllowed

:REQENTER_rc + 1;

TRUE: REQENTER_rc;

esac;

The values of the variable safetyViolation and the

lifeline variables in a next state are defined by assign-

ments. The next value of the event variable, however, is

defined by a transition relation shown in Listing 8. The

idea of this transition relation is essentially the follow-

ing:

1. If a hidden event is enabled, i.e., at least one active

MSD has reached its terminal cut, the value is hid-
den Event.

2. If no hidden event is enabled, and the system is not

active, the next event is any environment event.

3. If no hidden event is enabled, and the system is

active, the next event is any active event that is

not forbidden or safetyViolationInevitable if all active

events are forbidden.

The constituents of this transition relation are cre-

ated either once per MSD specification or in an n-to-1

mapping from environment and system messages.

Listing 8 Transition relation section of the SMV model cre-
ated for the MSDs REQENTER and REPLYBEFORELB

TRANS
(!hiddenEvent_enabled |

next(event) = hidden_Event) &

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 13

(hiddenEvent_enabled |
active_system |
next(event) = env_rc_endOfTS |
next(event) = env_rc_lastBreak) &

(hiddenEvent_enabled |
!active_system |
next(event) = safetyViolationInevitable &

(forbidden_rc_next_requestEnter |
!active_rc_next_requestEnter) &

(forbidden_next_rc_enterAllowed |
!active_next_rc_enterAllowed) |

active_rc_next_requestEnter &
next(event) = rc_next_requestEnter &
!forbidden_rc_next_requestEnter |

active_next_rc_enterAllowed &
next(event) = next_rc_enterAllowed &
!forbidden_next_rc_enterAllowed)

In our mapping, we also encode system messages

with one Boolean parameter. The message enterAllowed
for example carries such a parameter, but, for brevity,

we do not show the aspects of the SMV model related

to these parameters in detail. Intuitively, a message pa-

rameter is encoded as as follows: There is one additional

Boolean variable p created, which carries the value of

the parameter if in the current step a parametrized mes-

sage occurs.

The value of the parameter value is determined by

an extension of the transition relation: p can be false

if currently an executed message is enabled that will

be executed in the next step and that specifies the pa-

rameter value to be false. p will be false if in this case

there is not also an active MSD with the same mes-

sage enabled, but which specifies the parameter to be

true. If there is the same message enabled, one specifies

the parameter to be true, the other specifies it to be

false, p can be true or false non-deterministically. p will

be true if there is no executed parametrized message

enabled that specified the parameter value to be false.

Keep the value of p restrained to one value, true, in

cases where the parameter value is not of concern helps

to reduce the reachable state space.

The variable p can also occur in the definition of

the derived variables violation by init event next 〈MSD-
name〉 and violation by non-init event next 〈MSD-name〉
to express that a violation occurs if a parametrized mes-

sage occurs that cannot be unified with a message in the

diagram because there another value for the parameter

is specified.

4.2 Relating Scenarios with Features

In the following, we explain how the specification in

Fig. 7 is encoded with the feature diagram and the

MSDs being associated to the features as shown in the

figure. As already explained in Sect. 2.1, features are

represented in the SMV model as Boolean variables

that can be used in assignment expressions or transition

relation definitions. In our case, we additionally encode

the constraints on the feature variables imposed by the

feature diagram [30].

Listing 9 show the feature module created for the

feature diagram shown in Fig. 7. For each feature, a

feature variable of the form f〈feature-name〉 is created.

Furthermore, in the assignment section, an initializa-

tion expression and a next expression is created for

each feature. All feature variables are initialized non-

deterministically with true or false, except in the case

of the base feature, i.e., the root of the feature dia-

gram, which is initialized to true. This means that this

feature is present in all variants. The next expressions

state that once an initial value it chosen for a feature

variable, this value remains unchanged in future steps.

The possible values that the feature variables can be

initialized with is, however, constrained by a transition

relation. Here an expression is added for every child fea-

ture relationship. In case of an OR-relationship, as in

our example, expressions are created of the form f〈pa-
rent-feature-name〉 ⇔ f〈child1-feature-name〉 | f〈child2-
feature-name〉 | In the example, this means that if

the BaseFeature is present, then so must be RequEnter-
Feature or ReplyBeforeLBFeature, or both. The encod-

ing of an XOR child feature relationships works accord-

ingly, replacing the OR-operator | with xor.

The formula above is a correction and an optimiza-

tion compared to our previous version of the mapping

that we realized in the scope of [15]. Previously, we

encoded the OR relationships as above, but with an

implication (⇒) and not the equivalence (⇔). It must

be an equivalence and not an implication because in

a feature diagram, the presence of a child feature also

implies the presence of its parent feature. Previously,
this introduced a number additional, unintended prod-

ucts, which impaired the performance benefits of the

dedicated product line model-checking algorithm.

Listing 9 The feature module created for the feature dia-
gram in Fig. 7

MODULE features

VAR
fBaseFeature: boolean;
fRequEnterFeature: boolean;
fReplyBeforeLBFeature: boolean;

ASSIGN init(fBaseFeature) := { TRUE };
next(fBaseFeature) := fBaseFeature;

init(fRequEnterFeature) := { TRUE, FALSE };
next(fRequEnterFeature) := fRequEnterFeature;

init(fReplyBeforeLBFeature) := { TRUE, FALSE };
next(fReplyBeforeLBFeature) := fReplyBeforeLBFeature;

TRANS
fBaseFeature <->

fRequEnterFeature | fReplyBeforeLBFeature

14 Joel Greenyer et al.

AND child feature relationships are encoded by ex-

pressions of the form f〈parent-feature-name〉 ⇒ f〈child-
1-feature-name〉 & f〈child2-feature-name〉 & . . . , which

means that in the presence of the parent feature, also all

child features must be present. Optional child features

are ignored in this conjunction expression. Addition-

ally, the presence of a child feature, also the presence of

an optional one, also requires the presence of the par-

ent feature. Therefore, additionally expressions of the

form f〈child-feature-name〉 ⇒ f〈parent-feature-name〉 are

created for each child-feature in an AND-relationship.

Last, Listing 10 shows how the feature variables in-

fluence the part of the SMV model that encodes the

play-out behavior of the MSDs in the specification. First,

an instance of the feature module is assigned to the

variable f, which is created for every product line spec-

ification. In the next assignment expression that is cre-

ated for each lifeline, a first case condition of the form

!f.f〈feature-name〉: 0; is added, where f〈feature-name〉 is

the feature variable created for the feature that the

MSD is associated to. The effect of this additional case

condition is that MSDs are never activated if their fea-

ture is not currently present in the product.

Listing 10 No progress for lifeline variables of MSDs of an
inactive feature

VAR
...
f: features;
...

ASSIGN
...
next(REPLYBEFORELB_env) := case

!f.fReplyBeforeLBFeature: 0;

violation_by_init_event_next_REQENTER &
!hotEventEnabled_REQENTER: 1;

...
esac;
...

4.3 Verification of Consistency

Once all the MSDs have been translated into SMV

code and related with their feature, we obtain a for-

mal model describing the play-out behaviour of every

product. Still, we have to prove that the specification of

each product is consistent. For this purpose, we check

the SMV model with the NuSMV extension [7]. This

extension allows us to determine the exact set of prod-

ucts (as opposed to only one) that does not satisfy a

certain property, expressed in Computation Tree Logic

(CTL) [6]. Intuitively, this logic allows to reason about

execution paths and provides ways to specify existen-

tial and universal requirements over these paths. For

example, the formula ∀�¬safetyV iolation means “For

all paths, the Boolean proposition safetyV iolation is

always false.” and the formula ∃♦¬active system ex-

presses that “There exists a path where the Boolean

proposition active system is eventually false.”

In order to specify that the system is able to react

properly each time an environment event occurs, we

consider the CTL formula P1 defined as

∀�(environmentMessageOccured→ ∃�
(¬safetyV iolation ∧ ∃♦(¬active system))).

Intuitively, this formula says that it must always be the

case that if an environment message occurs, the sys-

tem can find a sequence of system messages4 that it

can send so it eventually reaches a state where there

is no active message event and no safety violation oc-

curs (caused by a subsequent environment event). If

the specification of all products satisfy the formula,

the model-checker returns True. However, if there is

at least one combination of features that does not sat-

isfy the formula, the tool returns a Boolean expression

defining the set of inconsistent products. In the case

of our example, the model-checker returns the formula

¬(BlockingSwitchControl∧CoordinatedSwitchEntry),

which means that the products with both the features

BlockingSwitchControl and CoordinatedSwitchEntry

are inconsistent. Together with the formula, the model-

checker returns one or several execution traces from

which we can understand which sequence of messages

leads to a state where a safety violation occurs or the

system cannot progress.

We can simplify the above CTL formula into a for-

mula P ′1 defined as:

∀�(environmentMessageOccured→ ∃♦
(¬safetyV iolation ∧ ¬active system)).

According to the semantics of CTL [6], P1 and P ′1 are

not equivalent. However, their verification on any of our

generated SMV model will always lead the same results

because:

1. The safetyV iolation variable, once set to true, al-

ways remains true. Moreover, it cannot receive the

value true when the system is inactive (see List-

ing 7).

2. According to the play-out semantics, the environ-

ment cannot send a message unless the system is

inactive.

4 The formula does not explicitly state that there must exist
a sequence of system messages. However, the model restricts
that only system messages can occur if active system is true
(see Listing 8).

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 15

Thus, P ′1 is an appropriate alternative to P1. It is also

more concise and easy to understand. During our ex-

periments (further described in Section 5.3), however,

we observed that checking P ′1 instead of P1 only leads

to negligible variations in performance. Consequently,

we stick to P1 in the rest of this paper.

4.4 Discussion

Our approach has a number of restrictions. First of all,

the SMV model encodes the play-out semantics of the

MSD specification. This means that we consider that a

system can only send messages that correspond to exe-

cuted message currently enabled in an active MSD—the

system cannot decide to send other messages or not to

execute an enabled executed message. This restriction is

necessary for our approach to remain feasible. Further-

more, it is a meaningful restriction, because we only

consider the execution of messages that are explicitly

marked to be executed. Anything else may even be re-

garded as an unintended behavior by the requirements

engineer. However, it makes the approach incomplete,

i.e., there may be a system that behaves differently than

the play-out algorithm, but implements the specifica-

tion.

Furthermore, the property P1 checks that from a

state where an environment message occurred, the sys-

tem can find a valid sequence of system messages in

reaction to that event. But if there does not exist such

a reaction, it will not consider if it could have avoided

that state by choosing another order among steps in a

previous sequence of system messages that it sent in re-

action to some earlier environment event. This require-

ment cannot be expressed in CTL, which motivates the

need for extending our approach: we would have to view

the problem as an infinite two-player game [4,14].

Harel et al. show that, if it can be ensured that every

execution of play-out avoids safety violation or getting

stuck, then statecharts can be transformed from the

scenarios for every object in the system [18]. With our

approach, we can also prove an according property P2:

∀�(¬safetyV iolation ∧ ∀♦(¬system is active)).

Note that the previous formula is weaker than this one.

When it is satisfied, it means that we can refine the

specification so that the other formula is satisfied as

well. Inspired by the synthesis method of Harel et al.,

we can thus provide RE engineers with automated tech-

niques for deriving implementations for product lines.

The derivation of state-charts is, however, out of the

scope of the current paper.

The correctness of our mapping in combination with

the above formulae, i.e., that the constructed model-

checking problem correctly encodes the consistency-checking

problem, is hard to prove. To validate the correctness

of the encoding, we conducted tests with a number of

small product line specifications which we designed to

be consistent or to contain certain kinds of inconsisten-

cies. In all the tests, the model checker returned the

expected results.

5 Realization and Evaluation

In this section, we present a tool suite that realizes the

proposed methodology. We illustrate the applicability

of the tool through the RailCab example. We also assess

the efficiency of the verification algorithm against the

successive verification of the individual products.

5.1 Implementation

We have implemented our approach through a num-

ber of extensions to the Eclipse workbench. MSDs

are modeled via a lightweight extension, i.e., profile,

of UML. They can be edited via a graphical editor that

was implemented as an extension to the TOPCASED

UML editor within the ScenarioTools project5. We

similarly model feature diagrams as a lightweight exten-

sion of UML, inspired by [29]. Features are represented

by UML components. A feature component can have a

port from where it can reference child feature compo-

nents by dependencies. The port acts as a group for the

child feature dependencies and a particular stereotype

allows one to specify whether the child features are in

an AND, OR, or XOR relationship.

The input language for NuSMV is a textual lan-

guage for which we slightly modified an existing XText

editor6. We could then implement the mapping from

the MSDs + feature diagram UML model to SMV via a

model-to-model transformation. We specified the map-

ping through a Triple Graph Grammar (TGG), a declar-

ative, rule-based formalism for relations between mod-

els. This TGG is executed by the TGG Interpreter7.

The transformation result is then fed to NuSMV.

The result of model-checking all valid products is re-

ported in the output. In case there is an inconsistency

in any product, a counterexample is generated.

5 http://www.cs.upb.de/index.php?id=
scenariotools
6 http://code.google.com/a/eclipselabs.org/p/

nusmv-tools/
7 http://www.cs.uni-paderborn.de/fachgebiete/

fachgebiet-softwaretechnik/forschung/projekte/
tgg-interpreter.html

16 Joel Greenyer et al.

Instructions to download and install our implemen-

tation can be found on our website 8.

5.2 Application to the RailCab Example

We applied our methodology to model and verify the

consistency of the RailCab example. As presented in

Section 3, the product exhibiting all the features is in-

consistent, because the MSDs RC1EnterDisallowedWhen-
SwitchBlocked and RC1CoordinateSwitchEntry are incom-

patible.

We modeled this example in our tool, produced the

corresponding SMV model, and subsequently fed the

model into the NuSMV extension. When we verified

the model against the formula P1 (see Section 4.3),

NuSMV identified the inconsistent product and the

execution trace illustrating the violation. According to

this trace, we must avoid the following sequence of

events : env
endOfTS−−−−−−−→ rc2, rc2

requestEnter−−−−−−−−−−→ sc,

sc
enterAllowed−−−−−−−−−−→ rc2, rc2

register−−−−−−→ sc, env
endOfTS−−−−−−−→ rc1.

It means that if rc1 reaches the track section while rc2

is between rc1 and the switch, it is impossible for the

system to ensure the satisfaction of all the specifications

regardless of the (uncontrolled) environment events.

We decided to change the feature model in order

to forbid this combination of features. To that aim, we

replaced the OR relationship between the two features

with a XOR relationship. Once this is done, NuSMV

does not notice a violation of formula P1 anymore, nei-

ther of the formula P2. Hence, the play-out of the MSD

specification for any remaining product will never run

into any violation.

5.3 Performance Evaluation

Although checking the consistency of our running ex-

ample takes less than a second, this verification proce-

dure can be very time-consuming for larger models. The

selection of a specific algorithm and its optimizations

is thus of utmost importance. As stated by Classen et

al. [7, 8], there are two methods for model checking an

FTS. The first one, the enumerative approach consists

in deriving, from the FTS, the models corresponding to

each of the valid products and then verifying them in-

dividually. The second method, the dedicated approach,

relies on the dedicated algorithms proposed by Classen

et al.. A first and very significant advantage of the ded-

icated approach is that at the end of the verification, it

returns a concise formula that expresses which features

8 http://info.fundp.ac.be/fts/
implementations/msd2smv

create inconsistencies in the MSD specifications. In con-

trast to the enumerative approach, this allows engineers

to clearly observe which feature combinations cannot be

realized.

What remains to evaluate is the relative performance

of the two approaches. The enumerative approach ver-

ifies a behavior common to several products as many

times as the number of products that exhibit this be-

havior; this is a major threat to performance and scal-

ability, especially given that the number of products

is, in the worst case, exponential in the number of fea-

tures. On the contrary, the dedicated approach checks

common behavior only once. However, it requires the

introduction of additional variables (one per feature).

Classen et al. showed that their extension of NuSMV

often overcomes an enumerative application of the stan-

dard NuSMV algorithm, but not always. It is thus im-

portant to evaluate whether this approach is appropri-

ate for our own purpose and under which conditions it

is better than the other approach. Moreover, although

we do not optimize the algorithm of Classen et al. [7]

per se, we improve it by automatically encoding the fea-

ture interdependencies defined by the feature diagram

as part of the SMV model. This encoding makes the

verification procedure ignore execution paths available

to invalid products only, and thus increases its overall

performance.

Our evaluation focuses on the following research

questions:

1. What is the most efficient approach to check the

consistency of MSD specifications? How do factors

like number of products and number of MSDs affect

the performance of these two algorithms?

2. Is is possible to automatically derive an efficient

variable ordering from the MSD specifications and

the structure of the feature diagram? Is this order-

ing pattern more efficient than NuSMV’s native dy-

namic reordering?

In the following experiments, we compare the time needed

by both algorithms to verify the SMV models against

formulae P1 and P2. To obtain the SMV model related

to a particular product, we first remove the declaration

of the feature variables in the original model. Then,

we replace every feature variable by true if the feature

belongs to the considered product, and by false oth-

erwise. In the subsequent evaluations, we do not count

the time needed for computing these individual models.

5.3.1 Previous results and open questions

In our previous work [15], we conducted experiments

with a technical example as also documented in this

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 17

paper shortly (see Sect. 5.3.2). Our results were that

the dedicated approach outperforms the enumerative

approach most of the time, but not always. For big-

ger models of this kind, the enumerative approach was

again faster (at least for checking the P1 formula).

Our hypothesis was that the performance benefit of

the dedicated algorithm decreases in big models with a

high ratio of features variables compared to the MSD-

specific lifeline variables. To investigate this hypothesis

further, we conduct experiments with other kinds of

technical examples that allow us to fine-tune (1) the

number of features, (2) the number of MSDs per fea-

ture, (3) the number of valid products implied by the

feature diagram. Furthermore, we incorporated the en-

coding of the feature diagram to SMV as described in

Sect. 4.2. This yet increased the performance benefit of

the dedicated approach.

The results of our experiments allow us to revise

our previous hypothesis. In summary, the dedicated ap-

proach is generally more efficient than the enumerative

one, especially if the feature diagram implies a big num-

ber of different products. But the benefit of the dedi-

cated approach still decreases with respect to the enu-

merative approach as the models get bigger. We give

more details and explanations in Sect. 5.3.6.

5.3.2 Binary feature tree

In this first set of experiments, each specification has

a feature diagram where each feature has at most two

child features, connected with an OR-relationship. There

exist only features with distance i from the root if all

features with distance i− 2 already have two child fea-

tures. Each feature is connected with exactly one MSD.

An illustration of the example specification with three

features and three MSDs is given in Figure 8. According

to the feature diagram, three different products can be

derived: {F, F-1}, {F, F-2}, and {F, F-1, F-2}. The first

message of an MSD is a cold message and is followed by

two hot messages. Only the first message in the MSD

of the root feature is an environment message. The first

message of an MSD of a child feature is named like the

two hot messages of its parent’s MSD. This way, one ac-

tivation of an MSD triggers two activations of an MSD

for each child feature.

We extend such a specification by adding two child

features and two MSDs. The names of the first and sec-

ond child features are formed by appending “-1” resp.

“-2” to the name of its parent. The names of the two

hot message of the child feature’s MSD are extended

likewise.

Following this scheme, we created product line spec-

ifications for 3, 5, 7, 9, 11, 13, 15 features, which leads

do

env:Environment a:A b:B

DoMRoot

m

m

m

a:A b:B

DoM1-1

m-1

m-1

m

a:A b:B

DoM1-2

m-2

m-2

<<Feature>>

F-2
<<Feature>>

F-1

<<BaseFeature>>

F

<<BaseFeature>>

F

<<Feature>>

F-1
<<Feature>>

F-2

h,e

h,e

c,m

h,e

h,e

c,m

c,m
h,e

h,e

Fig. 8 Technical evaluation example with binary tree and
three features

to 3, 7, 15, 31, 63, 127, and 255 products respectively.

Note that for each additional feature, there is an ex-

ponential increase in the number of products and the

number of different reachable combinations of cuts.

Since NuSMV is a fully-symbolic model checker,

the ordering of the variables is an important factor

for the performance of the algorithms. NuSMV pro-

poses two modes to set variable ordering. In the first

mode, called static, the engineer specifies which order-

ing NuSMV must use throughout the verification. In

the second mode, called dynamic, the model checker

automatically reorders the variables during the execu-

tion. While this is usually more efficient than random

orderings, it creates a significant overhead that conse-

quently increases the verification time with respect to

efficient static orderings. During the experiments, we

managed to find out orderings that systematically per-

form better than the dynamic mode, and to figure out a

pattern that, in our examples, ensures an improvement

of the efficiency. According to this pattern, a good or-

dering must satisfy the following two rules. First, the

lifeline variables of a given MSD must be grouped to-

gether, and preceded by the feature variables they are

associated with. Second, if an MSD activates another

then the lifeline variables of the former must be placed

after the lifeline variables of the latter. Note that this

pattern is also efficient in the SMV model of a particular

product. In this case, the feature variables are ignored,

since they do not occur in a single-product model.

Table 1 shows the results of previous experiments we

performed to compare the dynamic ordering with the

static ordering [15]. It provides the verification time for

each property, algorithm, and ordering method. First of

all, let us note that the ordering pattern we have identi-

fied (our.) achieves order-of-magnitude improvements

over the dynamic ordering. Moreover, this latter order-

ing becomes particularly inefficient when the number of

features reaches 13, especially when it is combined with

the dedicated algorithm (Ded.). Of course, we could

evaluate the efficiency of these orderings through only

18 Joel Greenyer et al.

Table 1 Verification times for the cascading example.

P1 P2

Ded. Enu. Ded. Enu.
F. dyn. our. dyn. our. dyn. our. dyn. our.

3 0.05 0.01 0.08 0.03 0.05 0.01 0.08 0.03
5 0.21 0.04 0.62 0.11 0.21 0.04 0.64 0.13
7 0.93 0.22 2.64 0.54 1.65 0.32 3.01 0.64
9 6.52 1.75 10.47 3.64 7.16 2.19 11.88 5.06
11 53.88 24.16 131.48 32.53 56.77 45.46 175.12 54.12
13 1631.57 192.68 989.14 216.24 2622.94 330.94 1263.56 431.00
15 7798.22 1510.21 2314.10 1041.50 5364.32 2430.15 2903.26 2700.90

Fig. 9 Binary-tree models: verification times (in seconds,
logarithmic scale) and speed ups.

two examples, and are aware that this is far from suf-

ficient to prove that they are optimal. Still, we applied

different ordering patterns by relaxing some of the rules

and/or adding new; it turned out that no ordering we

tried outperformed ours. This suggest that our ordering

pattern is a likely candidate for an optimal ordering.

All the benchmarks that follow were run on a 5 Intel

Xenon E5520 Quad-Core CPUs at 2,27Ghz and 72 GB

RAM, Suse Linux. We ensured that no other running

process interfered with our experiments.

Figure 9 provides a graphical view of the results

when our ordering pattern is used. We also added the

results for a 17-feature model. The x-axis represents

the number of features, whereas the y-axis shows the

verification time in seconds on a logarithmic scale. It

turns out that the dedicated algorithm outperforms the

enumerative method (Enum.) in every case. However,

we observe a major decrease of the speedup in the 11-

feature case. From 13 features on, the speedup contin-

ues to decrease slowly. To explain this phenomenon, we

performed additional experiments where we change the

number of valid combinations of features. We report

the results of these two experiments in the next two

sections.

There is a noteworthy difference between these re-

sults and the ones presented in our previous paper [15].

Indeed, in our previous results, the dedicated algorithm

performed worse than the enumerative one on the 15-

feature case. This is because at that time, we did not

take into account that if a feature exists in a given prod-

uct then its parent must exist too. If these constraints

are not satisfied, invalid combinations of features are

considered. Even though a feature’s effect occurs only

after its parent’s effect in our example, ignoring the

above constraints significantly worsens the total verifi-

cation time. Our transformation now covers the whole

semantics of feature diagrams [30], hence the improve-

ments visible in the results.

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 19

do

env:Environment a:A b:B

DoMRoot

m

m

m

a:A b:B

DoM1-1

m-1

m-1

m

a:A b:B

DoM1-2

m-2

m-2

<<Feature>>

F-2
<<Feature>>

F-1

<<BaseFeature>>

F

<<BaseFeature>>

F

<<Feature>>
F-1

<<Feature>>
F-2

h,e

h,e

c,m

h,e

h,e

c,m

c,m
h,e

h,e

m

a:A b:B

DoM1-3

m-3

m-3

<<Feature>>
F-3

h,e

h,e

c,m

<<Feature>>

F-2

Fig. 10 Technical evaluation example with ternary tree and
three features

5.3.3 Increasing numbers of scenarios per feature

In order to evaluate the impact of the number of sce-

narios per feature, we performed a sensitivity analysis

where we increase the number of MSDs associated to

each feature. We make use of the 5-feature example as

a starting point. We first add a new MSD to every fea-

ture, that is, every feature except the root has now two

MSDs which are activated two times each by the parent

feature. This gives rise to a new model. We repeat the

MSD addition process and consequently obtain a series

of binary-tree 5-feature models that vary only by their

number of MSDs per feature.

We compared the relative performance of both al-

gorithms on the above models. It turned out that the

dedicated algorithm always achieves better results than

the enumerative one. Moreover, the speedup remains in

a range from 1.02 to 1.38 and seems to stabilize as the

number of MSDs per feature increases. Our results in-

dicate that this number has no direct impact on the

speedup and is thus not a significant factor for compar-

ing the two methods.

This result falsifies our previous hypothesis in [15],

so the ratio of feature variables vs. MSD-specific lifeline

variables does not have an impact of the performance

benefits of the dedicated approach. But, as we discuss

shortly, the number of feature variables will have an

impact if they imply a significant increase in the number

of possible products.

5.3.4 Ternary feature tree

Our second set of experiments follows a pattern simi-

lar to the previous one. The difference between them

is that each feature has three child features (instead

of two), which are connected with an OR-relationship.

As before, there may exist a feature of depth i in the

feature tree only if every feature of depth i − 2 has

exactly three child features. Figure 10 gives an exam-

ple of such a specification. The feature diagram defines

Fig. 11 Ternary-tree models: verification times (in seconds,
logarithmic scale) and speed ups.

six valid products, that is, the products with F and at

least one of its three child features. Compared to the

previous case, when additional features are introduced,

the growth in the number of valid products is steeper.

However, for a given number n of features, the number

of variables in the corresponding model is identical to

the number of variables in its binary-tree counterpart.

This allows us to observe the impact of the actual num-

ber of products on each algorithm. On the other side,

the ratio feature-to-MSD remains the same. It does not

mean that the ternary model is more complex than the

binary model, though, as there are fewer activations of

MSDs.

20 Joel Greenyer et al.

do

env:Environment a:A b:B

DoMRoot

m

m

m

a:A b:B

DoM1-1

m-1

m-1

m-1

a:A b:B

DoM1-2

m-2

m-2

<<Feature>>

F-2

<<Feature>>

F-1

<<BaseFeature>>

F

<<BaseFeature>>

F

<<Feature>>

F-1
<<Feature>>

F-2

h,e

h,e

c,m

h,e

h,e

c,m

c,m
h,e

h,e

Fig. 12 Technical evaluation example with unary tree and
three features

We modeled and checked variants with 4, 7, 10, 13,

and 16 features, which corresponds to 7, 31, 127, 511,

and 2047 products. Results are shown in Figure 11.

As in our previous experiments, our measures clearly

showed the benefits of our ordering pattern with respect

to NuSMV’s dynamic reordering. Thus, we only pro-

vide results for experiments where the former is used.

It turns out that the dedicated algorithm always per-

forms better than the enumerative one. Moreover, the

verification time for a given number of features is of

the same order as in the binary-tree case. This tends

to indicate that the number of valid products is not a

significant factor in the practical time complexity of the

dedicated algorithm. Conversely, the enumerative algo-

rithm performs worse than in the binary-tree case due

to a higher number of products (see, e.g., the results

for the 13-feature models).

5.3.5 Unary feature tree with two activations of MSD

In this third example, we make use of a linear feature

diagram where each feature except the leaf has exactly

one child feature, which is also optional. Apart from

that difference, the same rules are applied regarding

the MSDs and their activation. Figure 12 exemplifies

such specifications. In this case, only three products are

valid: {F-0}, {F, F-1}, and {F-0, F-1, F-2}. More gener-

ally, any feature diagram with n features built accord-

ing to this pattern specifies exactly n valid products.

As our previous experiments revealed, a lower ratio of

products-to-features disadvantages the dedicated algo-

rithm. However, in these settings there is more com-

monality between the products: the behavior of a fea-

ture occurs only after the behavior of the previous fea-

ture. Since the dedicated algorithm checks a common

behavior only once, this might offset the low number of

valid products.

We considered models with 5, 7, 9, 11, 13, 15, and

17 features. Results are shown in Figure 13. We observe

that for models with five to nine features, the dedicated

Fig. 13 Unary-tree models: verification times (in seconds,
logarithmic scale) and speed ups.

algorithm performs better than the enumerative one.

However, when the number of features reaches 11, its

verification time grows more rapidly than that of the

enumerative method. From 15 features on, we observe

an opposite trend: the verification time of the enumer-

ative algorithm raises more rapidly and exceeds that of

the dedicated algorithm.

5.3.6 Discussion

Our theory to explain the sudden change in the speedup

roots in the facts that NuSMV is subject to loss of

performance due to large BDDs manipulation when a

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 21

certain number of variables is reached. In the unary

case, this breaking point occurs between 60 and 70 vari-

ables. Since the dedicated algorithm requires the use of

one additional variable per feature, its performance de-

creases as soon as we introduce the 11-feature model,

in which 62 variables (features included) are declared.

In contrast, the enumerative algorithm performs worse

when the number of features reaches 15, which corre-

sponds to 67 variables (features not included). Our pre-

vious results for the ternary-tree models corroborate

this theory. Indeed, Figure 10 shows that the relative

efficiency of the dedicated algorithm with respect to the

enumerative one decreases as soon as the 13-feature

models, which makes use of 71 variables (features in-

cluded). Then, we observe that the speedup increases

again in the 16-feature case. In the binary case, the

most significant decrease of speedup occurs at 11 fea-

tures, that is, 62 variables altogether. Unlike the other

two cases we observed no recovery, though.

In addition to the above, we conclude that there are

two other significant factors to the relative performance

of the algorithms. The first one is the number of valid

products. If we consider the results for the binary and

ternary cases, it turns out that the performance of the

enumerative method worsens as the number of valid

products increases. For instance, we observe that in the

13-feature cases, the verification time of the ternary-

tree example is about two times higher than that of the

binary-tree model, whereas the number of products is

about four times more in the former case than in the

latter. The unary case seems to contradict this theory.

However, it must be taken into account that the topol-

ogy of this example is relatively different from the other

two, since optional features are used instead of OR re-

lationships. As opposed to the enumerative approach,

the performance of the dedicated method does not nec-

essarily raise as the number of product increases: the

13-feature binary case requires more verification time

than its ternary counterpart. The performance of this

approach thus seems not to depend on the number of

products per se.

The second factor is the commonality between the

products. As mentioned before, the unary-tree models

contains a lot of behavior common to the products be-

cause the effect of a feature can only occur after the

effect of the previous ones. In these cases, the dedicated

method benefits from a better scalability with respect

to the number of features. Indeed, after the breaking

point discussed above, the verification time needed by

this algorithm grows smoothly compared to the enu-

merative one. However, commonality is difficult to as-

sess without an in-depth analysis. It is therefore diffi-

cult to determine a priori which algorithm will be fa-

vored. According to our experiments, however, the ded-

icated algorithm definitely constitutes the best option

for checking the consistency of scenario-based product

line specifications.

Threats to validity. This technical example is not

intended to provide evidence for the practical applica-

bility of our approach. The primary goal of this evalu-

ation is to compare the performance between the dedi-

cated and the enumerative methods. Hence, our cascad-

ing example was designed to be challenging even with

a small set of features and MSDs, especially because

of the exponentially increasing number of MSD activa-

tions. The 15-feature model already has many millions

of states. We are thus optimistic that our technique

could be used for medium-sized practical examples.

6 Related Work

There are many approaches for synthesizing and consis-

tency checking formal scenario specification [4,14,16,18,

33]. Also the relationship between scenarios and goals

was studied in the past [10]. However, there are few ap-

proaches that consider the formal scenario-based spec-

ification of product lines.

Ziadi et al. consider the synthesis from statecharts

from sequence diagrams where interaction fragments

can be annotated to be active only in certain vari-

ants [34]. However, their approach does not support

safety and liveness properties as flexibly as ours. They

require a high-level diagram that defines a control struc-

ture among basic sequence diagrams, and so also con-

tradictions cannot occur in basic scenarios.

Ghezzi and Molzam propose an approach to verify

non-functional requirements of software product lines [13].

They model the system’s behavior with sequence dia-

grams where fragments can be annotated to be active

only in certain products. They, however, do not consider

that multiple scenarios can be active concurrently.

The relationship between feature models and struc-

tural as well as behavioral UML models was studied

for example in [3, 23, 32]. However, here only syntacti-

cal consistency relationships among different modeling

views are considered. In the same vein, Shaker et al. re-

cently proposed to model product line behavior thanks

to the combination of a feature model and a feature-

aware extension of statecharts [31]. In such statecharts,

features are introduced as a new parallel region, and

may change the priorities or the triggering conditions

of transitions. Like ours, their approach contribute to

increase the applicability of product line behavior mod-

elling. However, their method is not equipped with con-

sistency checking mechanisms. It is thus unable to iden-

tify which product variants are error-prone.

22 Joel Greenyer et al.

Harhurin and Hartman propose and approach for

modeling and consistency checking families of service-

oriented systems [22]. They model possible service com-

positions and formally specify constraints on the input

and output sequences of the ports of a service. Then

combinations of input/output ports that are incompat-

ible in a certain product can be detected by using a

theorem prover. In comparison, our approach allows

the requirements engineer not only to consider the in-

put/output behavior of a single service, but the inter-

actions between components can be specified, which is

crucial for complex interaction protocols, especially if

they involve more than two participants.

Lauenroth et al. propose an approach where the be-

havior of features in a product lines is modeled with

automata in a FTS-like fashion, i.e. transitions are only

enabled when certain features are selected [25]. Further-

more, invariants can be formulated and a SAT-solver is

employed to find inconsistent states that do not satisfy

the invariants. However, like FTS, this formalism is not

intuitive and suited to be used by engineers during the

early design.

7 Conclusion and Outlook

Our method supports the specification of product-line

behavior using a scenario-based formalism, viz. MSDs.

Associated with the notion of features, this approach

provides engineers with an intuitive and precise way

to model and analyse the behavior of a set of software

products. Thanks to the mapping from MSDs and fea-

ture diagrams to SMV and the use of model checking,

one can verify the consistency of such specifications.

Our evaluation suggests that a product-line specific al-

gorithm combined with an appropriate variable order-

ing constitutes the most efficient option to perform this

verification.

We identify three possible directions for future work.

First, we plan to support richer MSD language con-

structs like conditions, additional parameter types, and

object properties. This would allow us to study the

feasibility of our method in industrial settings. A sec-

ond direction is the design of an algorithm to synthe-

size statecharts from scenario-based specifications. To

this aim, we will investigate how the principles of FTS

model checking can be transposed to synthesis (i.e.,

infinite two-player games). By doing so, we will also

overcome the current limitations of our model-checking

approach. Regarding the statecharts to generate, we

consider two options: (1) the synthesis of a variability-

aware extension of statecharts (see e.g., Shaker et al.

[31]); (2) an incremental synthesis where the implemen-

tation of a particular product is derived from the imple-

mentation of other variants. Our third challenge is to

analyze the consistency of product line specifications

for dynamic systems, which could be supported by a

combination of synthesis and simulation [12].

Acknowledgements This research is funded by the Euro-
pean Commission, Programme IDEAS-ERC, Project 227977
SMScom, and by the Fund for Scientific Research – FNRS in
Belgium, Project FC 91490.

We thank the Collaborative Research Center 614 at the
University of Paderborn for providing the infrastructure for
our experiments, and especially Jürgen Maniera for the tech-
nical support.

References

1. UML 2.4.1 Superstructure Specification (2011). OMG
document formal/2011-08-06

2. Abadi, M., Lamport, L., Wolper, P.: Realizable and un-
realizable specifications of reactive systems. In: Proceed-
ings of the 16th International Colloquium on Automata,
Languages and Programming, ICALP ’89, pp. 1–17.
Springer-Verlag, London, UK, UK (1989). URL http:
//dl.acm.org/citation.cfm?id=646243.681448

3. Alférez, M., Lopez-Herrejon, R.E., Moreira, A., Amaral,
V., Egyed, A.: Supporting consistency checking between
features and software product line use scenarios. In: Proc.
12th Int. Conf. on Top productivity through software
reuse, ICSR’11, pp. 20–35. Springer, Berlin, Heidelberg
(2011)

4. Bontemps, Y., Heymans, P.: From live sequence charts
to state machines and back: A guided tour. Transactions
on Software Engineering 31(12), 999–1014 (2005)

5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F.,
Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.:
NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: Proc. International Conference on
Computer-Aided Verification (CAV 2002), LNCS, vol.
2404. Springer, Copenhagen, Denmark (2002)

6. Clarke, E.M., Emerson, E.A.: Design and synthesis of
synchronization skeletons using branching-time temporal
logic. In: Logic of Programs, LNCS, vol. 131, pp. 52–71.
Springer (1981)

7. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.:
Symbolic model checking of software product lines. In:
Proc. 33rd Int. Conf. on Software Engineering (ICSE’11),
pp. 321–330. ACM (2011)

8. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.,
Raskin, J.F.: Model checking lots of systems: efficient
verification of temporal properties in software product
lines. In: Proc. 32nd Int. Conf. on Software Engineering
(ICSE’10), ICSE’10, pp. 335–344. ACM (2010). DOI
http://doi.acm.org/10.1145/1806799.1806850

9. Cordy, M., Classen, A., Perrouin, G., Heymans, P.,
Schobbens, P.Y., Legay, A.: Simulation-based abstrac-
tions for software product-line model checking. In:
ICSE’12, pp. 672–682. IEEE (2012)

10. Damas, C., Lambeau, B., van Lamsweerde, A.: Scenar-
ios, goals, and state machines: a win-win partnership for
model synthesis. In: Proc 14th Int. Symp. on Foun-
dations of software engineering, SIGSOFT ’06/FSE-14,
pp. 197–207. ACM, New York, NY, USA (2006). DOI
http://doi.acm.org/10.1145/1181775.1181800

Features meet Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Specifications 23

11. Damm, W., Harel, D.: LSCs: Breathing life into message
sequence charts. In: Formal Methods in System Design,
vol. 19, pp. 45–80. Kluwer Academic Publishers (2001)

12. Frieben, J., Greenyer, J.: Consistency checking scenario-
based specifications of dynamic systems. In: Proc 4th
Workshop on Behavioural Modelling – Foundations and
Application (BM-FA 2012) (to appear). ACM (2012)

13. Ghezzi, C., Molzam Sharifloo, A.: Model-based verifica-
tion of quantitative non-functional properties for soft-
ware product lines. Information and Software Technology
(2012). DOI 10.1016/j.infsof.2012.07.017

14. Greenyer, J.: Scenario-based design of mechatronic sys-
tems. Ph.D. thesis, University of Paderborn (2011)

15. Greenyer, J., Sharifloo, A.M., Cordy, M., Heymans, P.:
Efficient consistency checking of scenario-based product
line specifications. In: 30th IEEE International Require-
ments Engineering Conference, RE 2012, September 24-
28, 2012, Chicago, Illinois, USA, Proceedings, pp. 161–
170 (2012)

16. Harel, D., Kugler, H.: Synthesizing state-based object
systems from LSC specifications. In: Foundations of
Computer Science, vol. 13:1, pp. 5–51 (2002)

17. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart play-
out of behavioral requirements. In: Proc. 4th Int. Conf.
on Formal Methods in Computer-Aided Design, FMCAD
’02, pp. 378–398. Springer, London, UK (2002)

18. Harel, D., Kugler, H., Pnueli, A.: Synthesis revisited:
Generating statechart models from scenario-based re-
quirements. In: H.J. Kreowski, U. Montanari, F. Ore-
jas, G. Rozenberg, G. Taentzer (eds.) Formal Methods in
Software and Systems Modeling, vol. 3393, pp. 309–324.
Springer (2005)

19. Harel, D., Maoz, S.: Assert and negate revisited: Modal
semantics for UML sequence diagrams. Software and
Systems Modeling (SoSyM) 7(2), 237–252 (2008). DOI
http://dx.doi.org/10.1007/s10270-007-0054-z

20. Harel, D., Marelly, R.: Specifying and Executing Be-
havioral Requirements: The Play-In/Play-Out Approach.
Software and System Modeling (SoSyM) 2, 2003 (2002)

21. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer
(2003)

22. Harhurin, A., Hartmann, J.: Towards consistent specifi-
cations of product families. In: Proc. 15th Int. Symp.
on Formal Methods, FM ’08, pp. 390–405. Springer,
Berlin, Heidelberg (2008). DOI http://dx.doi.org/10.
1007/978-3-540-68237-0 27

23. Jayaraman, P., Whittle, J., Elkhodary, A., Gomaa, H.:
Model composition in product lines and feature interac-
tion detection using critical pair analysis. In: G. Engels,
B. Opdyke, D. Schmidt, F. Weil (eds.) Model Driven En-
gineering Languages and Systems, LNCS, vol. 4735, pp.
151–165. Springer (2007)

24. Kang, K., Cohen, S.G., Hess, J.A., Novak, W.E., Peter-
son, A.S.: Feature-oriented domain analysis (FODA) fea-
sibility study. Tech. rep., Software Engineering Institute,
Carnegie Mellon University (1990)

25. Lauenroth, K., Pohl, K.: Dynamic consistency checking
of domain requirements in product line engineering. In:
International Requirements Engineering, 2008. RE ’08.
16th IEEE, pp. 193 –202 (2008). DOI 10.1109/RE.2008.
21

26. Maoz, S., Harel, D.: From multi-modal scenarios to code:
Compiling lscs into aspectj. In: Proc. Int. Symp. on Foun-
dations of Software Engineering (FSE’05), pp. 219–230
(2006)

27. Plath, M., Ryan, M.: Feature integration using a feature
construct. Sci. Comput. Program. 41(1), 53–84 (2001)

28. Pohl, K., Böckle, G., van der Linden, F.J.: Software Prod-
uct Line Engineering: Foundations, Principles and Tech-
niques. Springer (2005)

29. Possomps, T., Dony, C., Huchard, M., Tibermacine, C.:
Design of a UML profile for feature diagrams and its tool-
ing implementation. In: Proc. 23th Int. Conf. on Software
Engineering and Knowledge Engineering (SEKE’11), pp.
693–698. Knowledge Systems Institute Graduate School
(2011)

30. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature di-
agrams: A survey and a formal semantics. In: Require-
ments Engineering, 14th Int. Conf., pp. 139 –148 (2006).
DOI 10.1109/RE.2006.23

31. Shaker, P., Atlee, J.M., Wang, S.: A feature-oriented re-
quirements modelling language. In: 30th IEEE Interna-
tional Requirements Engineering Conference, RE 2012,
September 24-28, 2012, Chicago, Illinois, USA, Proceed-
ings, pp. 151–160 (2012)

32. Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R.,
Heider, W.: Flexible and scalable consistency checking on
product line variability models. In: Proc. Int. Conf. on
Automated Software Engineering (ASE’10), pp. 63–72.
ACM

33. Whittle, J., Schumann, J.: Generating statechart designs
from scenarios. In: Proc. 22nd Int. Conf. on Software
Engineering (ICSE’00), pp. 314–323 (2000)

34. Ziadi, T., Hlout, L., Jzquel, J.M.: Behaviors generation
from product lines requirements. In: Proc. UML2004
workshop on Software Architecture Description (2004)

