Compositional Synthesis of Controllers from
Scenario-Based Assume-Guarantee Specifications

Joel Greenyer', Ekkart Kindler?

1 Software Engineering Group, Leibniz Universitit Hannover, Germany
greenyer@inf .uni-hannover.de

2 DTU Compute, Technical University of Denmark, Denmark
ekki@dtu.dk

Abstract. Modern software-intensive systems often consist of multiple
components that interact to fulfill complex functions in sometimes safety-
critical situations. During the design, it is crucial to specify the system’s
requirements formally and to detect inconsistencies as early as possi-
ble in order to avoid flaws in the product or costly iterations during its
development. We propose to use Modal Sequence Diagrams (MSDs), a
formal, yet intuitive formalism for specifying the interaction of a system
with its environment, and developed a formal synthesis approach that
allows us to detect inconsistencies and even to automatically synthesize
controllers from MSD specifications. The technique is suited for specifi-
cations of technical systems with real-time constraints and environment
assumptions. However, synthesis is computationally expensive. In order
to employ synthesis also for larger specifications, we present, in this pa-
per, a novel assume-guarantee-style compositional synthesis technique
for MSD specifications. We provide evaluation results underlining the
benefit of our approach and formally justify its correctness.

Keywords: Scenario-Based Specification, Compositional Controller Synthesis,
Consistency Checking, Assume-Guarantee

1 Introduction

Modern software-intensive systems in areas like transportation or production of-
ten consist of many components that interact to provide complex functionality
in sometimes safety-critical situations. In the early design, interactions are typi-
cally specified by scenarios. We propose a model-based approach and use Modal
Sequence Diagrams (MSDs), introduced by Harel and Maoz [g], to specify inter-
action scenarios. MSDs are a formal interpretation of UML sequence diagrams,
based on the concepts of Live Sequence Charts (LSCs) [6], and allow engineers
to specify which sequences of events may, must, or must not happen in a sys-
tem that reacts to events in its environment. We extended MSDs to support
real-time constraints and assumptions on the environment. These extensions are
important for the specification of mechatronic systems where the software inter-
acts with physical/mechanical parts of the system. Furthermore, we developed



a technique for synthesizing controllers from such specifications and for showing
their consistency [7].

Formal scenario-based modeling and synthesis techniques have the potential
to immensely aid engineers in the development of modern technical systems, but
unfortunately, synthesis is computationally complex. To make synthesis feasible
also for bigger specifications, we present, in this paper, a novel technique that
for certain kinds of specifications, allows engineers to decompose the synthesis
problem into two parts that can be solved more efficiently.

The technique comprises of four manual steps that require the engineer to (1)
subdivide the component structure of the system in two parts, (2) possibly split-
ting components in two, and (3) subdividing the MSD specification accordingly.
Last (4), additional MSDs may be introduced as additional requirements that
one part of the system can assume about the other, in order to help it realize its
part specification. If controllers can be successfully synthesized for the resulting
part specifications, the composition of these controllers forms an implementation
of the overall specification. We present a formal justification for the soundness
of our technique, which was inspired by Stark [18].

The technique presented in this paper is the first that allows for the decom-
position of the synthesis problem for LSC/MSD specifications into two synthe-
sis tasks that can be solved independently. Kugler and Segall also proposed a
compositional synthesis approach for LSC specifications [I3] that improves the
synthesis’ efficiency. In their approach, controllers are also synthesized for spec-
ification parts. Ultimately, however, always a last synthesis step is required to
obtain a controller for the complete specification from the controllers for the
specification parts. This is not the case with our technique, and thus we can of-
ten more drastically reduce the complexity of the synthesis problem. Also Maoz
and Sa’ar recently proposed a technique for synthesizing controllers from LSC
specifications with environment assumptions [I6], but they do not address the
decomposition of the synthesis problem.

Our technique requires the creativity of the engineer in finding a viable de-
composition of the specification as well as assume/guarantee properties that are
small enough so that the compositional synthesis is of advantage. If, for a chosen
decomposition of the specification, no controllers could be synthesized, this does
not imply that there does not exist a controller for the global specification. There
might be other decompositions for which synthesizing controllers was possible. In
this sense, our technique is not complete. Another limitation of our approach is
that, in the decomposition, the second part specification can make assumptions
about the first, but not vice versa. Supporting assumptions in both directions
would require extra mechanisms, which we plan to investigate in future work.

This paper is structured as follows. We introduce an example in Sect.
and explain the foundations in Sect. [3] We describe our compositional synthesis
technique in Sect. ] Here we focus mainly on the technical aspects of creating a
correct specification decomposition, but give a brief discussion on the methodol-
ogy for using our technique. We then present realization details and evaluation
results in Sect. [5} discuss related work in Sect. [6} and conclude in Sect. [7]



Environment Assumptions:
A1) The interarrival time of plates on the table
is greater FMIN.

press A2) The time for moving arm A from the table
to the press or from the press to the table is
between AMIN and AMAX.
A3) The time for moving arm B from the press
to the deposit belt or from the deposit belt to
the press is between BMIN and BMAX.
A4) The time for the press to press a blank
plate is between PMIN and PMAX.

Requirements:
R1) When a blank plate arrives at the table, arm A must pick it up, move it to the press, and release it into the press.
The arm then has to move back to the table, where it must arrive before the next blank arrives.

R2) When arm A has released the blank into the press, the press must press it, and then arm B must pick up the plate.
R3) When arm B has picked up the processed plate, it must transport the plate to the deposit belt.
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R4) When arm B has arrived at the deposit belt, it must release the processed plate and then move back to the press.
R5) Arm A must only release a blank into the press if arm B has picked up the processed plate from the press.

R6) Arm A must not attempt to pick up the next blank before having returned to the table.
R7) Arm B must not attempt to pick up the pressed plate before having returned to the press.

Fig. 1. A sketch of the production cell system and its textual specification

2 Example

As an example, we consider a simplified specification of a production cell [14],
an industrial production robot with two arms. One arm, arm A, picks up metal
blanks that arrive from a feed belt on a table and places them into a press, where
they are pressed into plates. The other arm, arm B, picks up the pressed plates
and places them on a deposit belt, where they are transported off again. Figure ]
shows the system with its requirements and environment assumptions in plain
text. Initially, arm A is located at the table, and arm B is located at the press.

After formalizing the above requirements and assumptions into an MSD spec-
ification M S for a single controller component ¢, the technique described in this
paper will allow us to

1. split the controller component ¢ into two components, cl for arm A, and c2
for arm B and the press,

2. split M S into two part specifications M .Sy and M Sy for cl resp. c2,

3. introduce additional properties as assumptions to M .Sy and as requirements
to M Sy, with the aim of helping ¢2 in being able to realize M S5, while not
making it impossible for cl to realize M S,

so that finally, if controllers cl and c2 can be synthesized, they together form an
implementation for the global specification M S.

3 Foundations

As foundations, we first formalize a notion of components that interact via mes-
sages. Then we introduce controllers and MSDs. As time is relevant in our ex-
ample, we consider a timed setting. Our technique, however, is also applicable
in an untimed setting.



3.1 Object Systems, Message Events, Runs

We consider systems of objects that interact via messages. Our definitions are
based on Harel and Marelly [9]. For brevity, we consider synchronous messages
only. Our technique would in principle also work for asynchronous communica-
tion, but this would need to be formalized.

Definition 1 (Object system, message, messages event, alphabet). An
object system consists of a set of objects O that exchange messages. A message
has a name (from a set of names Name) and a sending and receiving object.
The sending and receiving of a message in an object system is a single message
event, or simply event, e € O x Name x O. The set of possible message events
1s called the alphabet, denoted with X C O x Name X O.

We consider a timed setting where message events occur at certain points in
time. The progress of time is represented by a sequence of positive, increasing
real values [I]. A message event itself does not take any time.

Definition 2 (Timed event, timed words, timed language). A timed
event is a pair (e,r) € (X x RZ%) where e is a message event occurring at time r.
A timed word 7 € (X x RZ0) is an infinite sequence of timed events. For every
two subsequent timed events in a timed word m = ..., (e;, 1), (€41,Tix1);- .., WE
require that r; < rip1. Furthermore, for every r € RZ0, we require that there
exists a timed event (e;,r;) such that r; > r, i.e., time must progress. The set of
all timed words is denoted by L and a subset L C L is called a timed language.
The complement of a language L is denoted by L and defined as L = L\ L.

3.2 Controllers and Parallel Composition

Subsets of objects in the object system can be controlled by a controller. There
can be multiple controllers, but the objects controlled by different controllers
must be disjoint. We consider a controller to be a timed automaton [I] with
some additional constraints, which will be described shortly. We rely on the usual
definitions [I5], and only briefly and informally explain the essential concepts,
since the concrete controller formalism is not important for our approach.

A timed automaton TA = (X, 5,80, X,1,T) is an automaton with a finite
set of locations S, Sy C S being start locations, and a finite set of real-valued
variables X, called clocks, which increase synchronously and monotonically over
time. I are invariants for locations, which specify that a timed automaton must
not be in a location at a certain time. A timed automaton has edges between
locations, which are defined through a relation 7 C S x X x C(X) x 2% x §.
An edge (ss,€,%, A, s¢) goes from location ss to location s; and is labeled by an
event e. The element ¢ € C(X) is called a constraint on clock variables that is
the guard of an edge, permitting it to be taken only at certain times. A € 2%
is a subset of clocks that are reset when the edge is taken. A timed automaton
accepts a timed language. For an automaton T'A, we denote the accepted timed
language as L(T A).



If two timed automata share some events but have a disjoint set of clocks, we
can form the parallel composition of the two automata, which is defined through
the construction of the product of the two automata. For two timed automata
TA; and T As, the parallel composition is denoted as T'A;||T As.

For a controller of a subset of objects in the object system, we require that
for each message event not sent or received by an object that is controlled by the
controller, each location has unguarded self-edges labelled with that event and
without any clock reset. This requirement reflects the fact that a controller for a
particular subset of objects should not be able to block the sending or receiving
of messages among objects that it does not control.

Definition 3 (Controller). We define a controller C as an extended timed
automaton: C = (X,5,50,X,I,T,0¢), where Oc C O is a subset of objects
in an object system O controlled by C. Let Yo = X' N ((Oc x Name x O) U
(O x Name x O¢)) be the messages sent and received by the objects in Oc.
Then for every controller C we require that for every location s € S and every
event e € X\ X, there is an edge (s,e,true,0,s) € T (unguarded, no clocks
reset). If C1 and C2 are controllers for objects Oc1 and Oca, we require that
Oc1NO¢gy = 0.

The additional self-edge for all the message events sent and received by the
object not controlled by a controller allow us to infer the following.

Lemma 1 (Composition is conjunction). Let Cy and Cs be two controllers
accepting the languages L(Cy) and L(C3). Then L(C1||C2) = L(Cy) N L(Cy).

We assume an open-world setting where the object system is subdivided into
system objects and environment objects. System objects are controllable, i.e., the
objects we seek an implementation for. Environment objects are uncontrollable;
they represent for example sensors and actuators by which a software controller
monitors and acts upon the physical world.

In this setting, we assume that if an environment event occurs, the system ob-
jects can immediately take any finite number of steps to react to this event before
the next environment event occurs (in accordance with Harel and Marelly [9]).
If the system waits for time to pass, environment events may occur again. This
behavior can be ensured by formulating certain restrictions for the controllers of
the environment and system objects, but we omit these restrictions for brevity.

3.3 MSD Specifications

An MSD specification specifies the valid interaction behavior in an object sys-
tem [§]. We consider MSD specifications that not only formulate requirements
on the system, but also formulate assumptions on how the environment behaves.
The requirements and assumptions are two sets of MSDs.

Furthermore, MSDs can be existential or universal. Existential diagrams
specify sequences of events that must be possible to occur in the object sys-
tem and universal diagrams specify requirements that must be satisfied by all
the sequences of events. We consider only universal MSDs in this paper.



MSDs, lifelines, and messages An MSD is a sequence diagram where each
lifeline represents an object in the object system. A message in an MSD rep-
resents a message event. Furthermore, a message has a temperature and an ex-
ecution kind. The temperature can be either hot or cold; the execution kind
can be either monitored or executed. Figure [2| shows two MSDs ArmATransport-
BlankToPress and PressPlateAfterArmAReleasesBlankPlate from the production
cell specification. They formalize the requirements R1 and R2 and refer to the
object system sketched at the top of Fig. [[] The temperature and execution
kind are indicated by a label (e.g., h,c, e,m). The hot or cold temperature is also
represented by red or blue color of the arrows. Monitored messages also have a
dashed arrow; executed messages have a solid arrow.

Intuitively, a monitored message says that something may happen whereas an
executed message says that something must eventually happen (liveness). A hot
message says that no event expected at another point in the scenario must occur
(safety) before the event represented by that message occurs. A cold message,
by contrast, says that this may happen. We assume that an MSD has only one
first message, which must be cold and monitored.

For example, consider the MSD ArmATransportBlankToPress in Fig. [2} The
hot and executed message pickUp says that after blankArrived occurred, pick-
Up must eventually occur and no other event represented by a message in the
diagram is allowed to occur. Then, likewise, moveToPress must occur. The hot,
but monitored message arrivedAtPress means that arrivedAtPress may oc-
cur, but as long as it does not occur, no other message event in the diagram must
occur. Then releaseBlank must occur, etc. This interpretation of the message
temperature and execution kind extends the original definition [8] where the
temperature alone reflects both the safety and liveness requirements.

More specifically, the semantics of these messages is as follows: When an
event occurs in the system that is represented by the first message in an MSD,
an active copy of the MSD or active MSD is created. As further events occur
that are represented by the subsequent messages in the diagram, the active MSD
progresses. This progress is captured by the cut, which marks for every lifeline
the locations where the occurred messages are attached to the lifeline. If the cut
reaches the end of an active MSD, the active copy is terminated.

ArmATransportBlankToPress ) PressPlateAfterArmAReleasesBlankPlate J

ts: TabIeSensor c: Controller ’ c:Controller ’@
e L emplesse Ry tne |
| moveToPress Pl he e press |
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Fig. 2. The MSDs of the production cell specification for requirements R1 and R2
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Fig. 3. The MSDs of the production cell specification for assumptions Al, A2, and A4

If the cut is in front of a message on its sending and receiving lifeline, the
message is enabled. If a hot message is enabled, the cut is also hot; otherwise the
cut is cold. Similarly, if an executed message is enabled, the cut is also ezecuted;
otherwise the cut is monitored.

A safety violation occurs if, in a hot cut, a message event occurs that is
represented by a message in the MSD that is not currently enabled. If the same
situation occurs in a cold cut, it is called a cold violation. Safety violations must
never happen, while cold violations may occur and result in terminating the
active copy of the MSD. If the cut is executed, this means that the active MSD
must progress and it is a liveness violation if an active MSD never terminates
or progresses to a monitored cut.

There can be multiple active copies of MSDs at a time. Figure [2] shows a
reachable configuration of cuts for (active copies of) the MSDs ArmATransport-
BlankToPress and PressPlateAfterArmAReleasesBlankPlate.

Environment assumptions, time, and forbidden messages We model
environment assumptions by MSDs that have an additional label «Environment-
Assumption». Figure [3] shows assumption MSDs from the production cell exam-
ple. BlankArrivalDelay models the assumption Al. The MSDs ArmAMoveFrom-
PressToTableTimeAssumption and ArmAMoveFromTableToPressTimeAssumption
model the assumptions A2, and the MSD PressPlateAssumption models the as-
sumption A4. The MSDs modeling the assumption A3 are very similar to those
modeling assumption A2, and are thus omitted. In these MSDs, we find addi-
tional constructs, namely clock resets, conditions, and forbidden messages.
Time constraints can be modeled in MSDs with resets of real-valued clock
variables and conditions, similar to timed automata. Clock resets and conditions
are boxes resp. hexagons that span one or multiple lifelines. If the cut is immedi-
ately before a clock reset or condition on all the lifelines it spans, the clock reset



or condition is enabled. If a clock reset is enabled, then immediately, and before
any other message event occurs, the clock variable is reset to zero and the cut
progresses beyond the clock reset.

Conditions have a temperature (hot or cold), represented by a red resp. blue
border color. In our figures, they have an additional label (h/c). We distinguish
timed and untimed conditions. In this paper, untimed conditions have only the
expression true or false. Timed conditions have an attached hour-glass symbol
and can have expressions of the form z > expr where x is a clock variable, expr
is an integer constant, and < is an operator <, <, >, >.

If a condition is enabled, and its expression evaluates to true, the cut pro-
gresses immediately and before any other message event occurs. If the expression
of a cold condition evaluates to false, the active MSD is terminated. If the ex-
pression of a hot condition evaluates to false, the cut cannot progress, but at the
same time it is a liveness violation if the cut never progresses. From this follows
that it is a liveness violation if a hot untimed false condition is enabled.

For hot timed conditions, we distinguish minimal delays (< € {>,>}) and
mazimal delays (< € {<,<}). If a minimal delay evaluates to false, the cut
progresses as soon as it becomes true. Meanwhile the cut is hot, i.e., no message
that is not currently enabled in the active MSD is allowed to occur. If a maximal
delay evaluates to false, this is a liveness violation of the MSD.

In the MSD BlankArrivalDelay, for example, a clock reset followed by a min-
imal delay is used to formalize the assumption that blanks arrive on the table
with a certain minimal delay: after blankArrived occurred, the clock c is im-
mediately reset to zero and then the minimal delay will be enabled until FMIN
time units have passed. In this time blankArrived must not occur.

At the end of an MSD, separated by a terminal cold false condition, there
can be hot or cold forbidden messages. If there is an active MSD and a message
event occurs that is represented in the MSD by a cold forbidden message, this is
a cold violation, and the active MSD terminates. If a message event occurs that
is represented by a hot forbidden message, this is a safety violation.

In the MSD ArmAMoveFromTableToPressTimeAssumption a clock reset and
hot time conditions are used to express that after moveToPress, the event
arrivedAtPress must occur within a certain interval. The hot forbidden mes-
sage states that, in this interval, also arrivedAtTable must not occur. The cold
forbidden message moveToTable states that moveToTable is allowed to occur,
but, since this leads to the termination of the active MSD, then it cannot be
assumed that the arm will arrive at the press in the specified interval.

To complete the example, Fig. [@shows the MSDs for the requirements R3-RT.

Satisfying and implementing a specification, and consistency Without
giving a more formal definition on the MSD semantics, we denote the (timed)
language accepted by an MSD D as L(D).

Definition 4 (Language accepted by a set of MISDs). For an object system
O and a set of message events X, Let M = {D1, ..., Dy} be a finite set of MSDs.
We define the language accepted by M as L(M) = (;_, L(D;).
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Fig. 4. The MSDs of the production cell specification for requirements R3-R7

A (timed) word satisfies an MSD specification if it is accepted by the re-
quirement MSDs or not accepted by the assumption MSD&H

Definition 5 (Satisfying an MSD specification). For an object system O
and a set of message events X, MS = (A,G,0g,Og) is an MSD specification
where A and G are sets of MSDs. A is called the assumptions and G is called
the requirements or guarantees. Og are the environment objects and Og are
the system objects, O UOg = O, Op N Og = (). The language satisfying M S,
denoted with L(MS), is defined as L(MS) = L(A) U L(G). A controller C for
all objects O satisfies an MSD specification M S iff L(C) C L(MJS).

A system controller for all the system objects implements an MSD speci-
fication if the controller that results from the composition with any possible
environment controller satisfies the specification.

Definition 6 (Implementing an MSD specification, consistency). Given
an MSD specification MS = (A,G,0Og,Os), a system controller Cs for Og
implements M S if, for the closed system formed by the composition with every
possible environment controller Cg for Og holds L(Cg||Cs) C L(MS). From
Lemma (1| and our definition of environment controllers, this is equivalent to
L(Cs) C L(MS). An MSD specification is consistent if there exists a system
controller for all the system objects Og that implements the specification.

4 The Assume-Guarantee Synthesis Approach

Given an MSD specification M .S, called the global specification in the following,
this section explains how to decompose this specification into two specifications

3 Of course, we expect the environment to satisfy the assumptions, but in environments
that do not, the system is not required to satisfy the requirements.



M Sy and M Ss, called part specifications, possibly adding MSDs as requirements
to M'S; and assumptions to M.S,, so that the consistency of the global specifi-
cation follows from the consistency of the part specifications.

4.1 Decomposing the Global Specification

Assume a given MSD specification MS = (A, G,0g,Og) for the objects O.
Then, we can decompose this specification as follows.

Step 1 (Subdivide the set of system objects). We subdivide the objects
Ogs into two disjoint sets Og1 and Oge with Og1UOgs = Og and Og1NOg2 =0
with the respective environment objects Og1 = O\ Og1 and Oga = O\ Oga.

Step 2 (Create subsets of MSDs for the part specifications). We create
two part specifications M Sy = (41, G1,0p1,0s1) and M Sy = (As, G2, Oga, Og2)
such that G; UGy = G and each part specification may contain any subset of
the assumption MSDs in the global specification: i.e. A1, As C A.

If we can now successfully synthesize system controllers from the part spec-
ifications, this means that these controllers implement their part specification
regardless of the behavior of their opposite controller. It may be, however, that
one controller must assume additional properties about the other controller,
which, in turn, must guarantee these properties.

Step 3 (Add assume/guarantee properties to the part specifications).
A set of MSDs, called AGT, can be added as additional assumptions to part
specification M.Ss and as additional requirements to part specification M S,
ie., MS| = (Al, G, U AG+, Opg1, 051) and M Sy = (Az U AGJr, Gs,0Fp2, 05'2)

Now the implementation of the second part specification makes assumptions
on the implementation of the first. Currently, we allow this only in one direction.
Otherwise, we could always easily construct two part specifications that are
consistent only because both controllers can mutually violate their assumptions,
but then fail to implement the global specification.

4.2 Decomposing System Objects

In many cases, as in our production cell, it is necessary to decompose a system
object into two objects that fulfill distinct functions in the two part specifications.
This requires also to change the MSD specification such that for the two resulting
objects an equivalent behavior is specified as for the initial object.

The goal is to split up the modified specification in such a way that one part of
the specification specifies the behavior of the first object and another part of the
specification specifies the behavior of the second object. In order to successfully
apply the described compositional synthesis technique, the behavior of the first
object must be independent from the behavior of the second, i.e., there may
remain MSDs that specify how the second object must react to events involving
the first object, but not vice versa. An example follows in Sect. [£.3]

Decomposing a system object is done before Step 1; thus, we call it “Step 0”:



Step 0 (Decomposing system objects). An object that is a system object in the
global specification can be decomposed into two system objects. This implies the
following changes:

1. The events that the initial object sends and receives have to be separated
into the message events that the resulting objects send and receive.

2. In each MSD of the specification where a lifeline represents the initial object,
this lifeline must be split into two lifelines that represent the two objects
resulting from the decomposition.

3. Also the diagram messages attached to the original lifelines must be attached
to one of the resulting lifelines according to the changed message events. In
MSDs where the effect is that one of the lifelines does not send or receive
any messages, this lifeline can then be removed. Otherwise,

4. the lifelines must be synchronized so that the order of the events as in the
original MSD is preserved. This can be achieved by introducing conditions
with the expression true that cover both lifelines. These conditions must
always be introduced between two messages where a message attached to
one lifeline is followed by a message attached to the other lifeline. (We as-
sume that the specified synchronization can always be realized in the final
implementation.)

4.3 The Decomposition of the Production Cell Specification

For our production cell example, we first decompose the system object ¢ into
the objects cl and c2 as already explained in Sect. [2} cl interacts with the table
sensor and arm A, c2 with the press and arm B. With an according separation
of message events, the MSDs shown previously must be altered as follows:

1. The MSDs representing the requirements R1 and R6 and assumptions Al
and A2 are changed so that the lifeline representing object c is replaced by
one lifeline representing the object cl.

2. The MSDs representing the requirements R3, R4, and R7 as well as the
assumptions A3 and A4 are changed so that the lifeline representing object
c is replaced by one lifeline representing the object c2.

3. The MSDs for the requirements R2 and R5 are replaced as shown in Fig. 5

The part specifications are created such that cl is the system object in the
first part specification and c2 is the system object in the second part specifi-
cation. Then the MSDs (as modified in Step 0) are split up so that the first
part specification is made up of the requirements MSDs for R1 and R6 and the
assumption MSDs for A1 and A2. The second part specification is made up of
the MSDs for R2 — R5, R7, and A3 and A4.

Finally, the MSD BlankArrivalAtPressDelay as shown in Fig. [] is added as
an additional assumption to the second part specification and as an additional
requirement to the first part specification. The MSD specifies that controller cl
must order arm A to release blank plates into the press with a minimal time
delay of RMIN. For certain values for RMIN and the other constants, Sect. [5]
documents the results of the controllers synthesized for the global specification
and the part specifications.
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Fig. 6. The MSDs representing the additional assume-guarantee property

4.4 Soundness of the Compositional Synthesis Technique

For proving the soundness of the composition, we assume that we have specifi-
cations M.S, M S, and M S as defined in Sect. And we assume that we have
two system controllers C; and Cs which implement M .S; and M S5 respectively:
L(Cy) € L(MSh) (1)

L(C2) C L(MSs2) (2)

In order to show L(C1]|Cs) C L(MS), we use the following properties, which
can be derived from Def. [d] [5] and [} and the definition of M S, MS; and M Ss:

L(MSy) = L(A1) U (L(G1) N L(AG™)) 3)
L(MSs) = L(A3) U L(AG*) U L(G>) (4)
L(MS) = L(A1) U L(A2) U (L(G1) N L(G2)) (5)
Combining these properties we obtain
L(C4||C3) = by Lemma 1
L(Cy) N L(C>) C by (1) and ‘
L(MS,) N L(MS,) — by (B) and (@)
(L(A1) U (L(G1) N L(AGT))) N
(L(A2) U L(AGH) U L(G2)) = laws of boolean algebra
(L(A1) N L(A2)) U (L(A1) N L(AGT))
(L(A1) N L(G2)) U
(L(G1) N L(AGt) N L(A3)) U
(L(G))NL(AGT)N L(AGH)) U
(L(G1) N L(AGT) N L(G2)) C laws of boolean algebra

)UL(A2) U (L(G1) N L(G2)) = by



4.5 Methodology

Once an engineer has decomposed a specification in such a way that the technical
conditions of Sect. are met, the presented approach is fully automatic. The
question remains how an engineer can come up with such a decomposition. This
is a question of methodology, which we can only address briefly here.

We argue that engineers who design a complex system typically have a good
idea of how to split up the system in order to keep on top of its complexity. The
split into components would follow this “mindset”.

Our approach works for systems where we can identify components that build
on each other, so that later components can make assumptions on earlier ones,
avoiding cyclic assumptions. The additional assume-guarantee properties AG+
can be used to restrict the timing or relative order of message events that one
component shares with an other.

5 Realization and Evaluation

In SCENARIOTOOLSE| [7], we implemented a synthesis technique for timed MSD
specifications by a mapping from a UML-based MSD specifications in ECLIPSE
to Timed Game Automata (TGA) that are input for UppPAAL TicA [312], an
extension of the UPPAAL model checker for solving two-player games.

With this mapping, we formulate a winning condition that checks whether
there is a strategy for the system to always eventually reach a state where all
cuts of requirement MSDs are monitored and no safety violation occurred in any
requirement MSDs, or there is an executed cut in an assumption MSD, or a safety
violation occurred in an assumption MSD. We call this the AGAF condition.
We also check a weaker condition for which strategies can be synthesized more
quickly: here we only check that never safety violations occur in requirement
MSDs or they occur in assumption MSDs. We call this the AG condition. If
the winning condition is satisfied, the tool generates a winning strategy for the
system; if not, a winning strategy for the environment is generated. From the
winning strategy, a controller can be derived.

In our MSD-to-TGA mapping, we can also specify different degrees of free-
dom for the system: Either it can always choose to send any system message and
also consider to wait for environment events, or we can restrict it to immediately
send only system messages that correspond to an executed message in a require-
ment MSD that is enabled in a current cut. The latter corresponds to the behav-
ior of the play-out algorithm, an executable semantics for LSCs/MSDs [TOJT5],
and can drastically simplify the synthesis. If a strategy could be synthesized in
the latter setting, the specification is called consistently executable.

Figure [7] shows the synthesis times and results from checking the consistent
executability of the part specifications and the global specification for the pro-
duction cell example with different values for FMIN, RMIN, etc. RMIN is
irrelevant for the global specification, since it was only added with the MSD

4 http://www.cs.uni-paderborn.de/index.php?id=scenariotools
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Fig. 7. The synthesis times for the part specifications vs. the global specification of
the production cell with different values for the constants FMIN, RMIN, etc.

PressPlateAssumption, see Fig. [6] The table shows that in the case of consistent
constant values the sum of the time needed to synthesize a strategy for the part
specifications (0.68 seconds + 0.44 seconds = 1.12 seconds) is only one fifth
of the time needed for synthesizing a strategy for the global specification (5.17
seconds). For more evaluation results and discussion, see [7, Appendix C].

6 Related Work

Our technique is the first that allows for the decomposition of the synthesis
problem for LSCs/MSDs into two problems that can be solved independently.

Kugler and Segall also proposed a compositional approach for synthesizing
controllers from LSC specifications [13]. With their approach, however, the syn-
thesis problem cannot be split into two separate parts. They first do synthesize
controllers for subsets of LSC in a specification—the resulting controllers, how-
ever, are then input for a subsequent synthesis step. Ultimately, a controller for
the whole specification must be synthesized, which is not the case in our ap-
proach. While their approach may be more flexibly applicable, our approach can
often more drastically reduce the time required by the synthesis.

Maoz and Sa’ar recently proposed a technique for synthesizing controllers
from LSC specifications with environment assumptions [16], but they do not
address the decomposition of the synthesis problem. Their approach also differs
from ours in the way that assumptions are formulated. They propose to model
environment assumptions by specially labeled environment messages in LSCs.
We instead propose to model assumptions by specially labeled MSDs. Only this
makes it possible to model the same property as requirements in one specifica-
tions and assumptions in another, which is the key to our technique.

Chatterjee and Henzinger also present a compositional assume-guarantee syn-
thesis approach from specifications in temporal logic [4]. They, however, regard
a different problem: translated into our terminology, they regard the problem of
synthesizing controllers for two system objects that interact with an environment



and have local, possibly interdependent specifications. The goal is to synthesize
two controllers that fulfill each system object’s local specification without violat-
ing the specification of the other system object. This process, called co-synthesis,
does not aim at being more efficient than synthesizing a global controller—in
general the problem is even more complex. They, however, sketch an abstraction
approach to make the co-synthesis more efficient.

Nejati et al. present a compositional approach for synthesizing sequential
compositions of features. Features are units of functionality that are modeled
with state machines, to fulfill certain requirements [17]. They, however, are only
considering to find a viable composition of features and do not consider the
synthesis of state machines themselves.

Kriiger proposes a mapping from (High-Level) Message Sequence Charts to
assume-guarantee specifications of components [I12]. The scenario language re-
garded by Kriiger, however, does not allow for flexible overlappings of scenarios
as it is allowed for LSCs or MSDs. So the resulting synthesis problem is more
simple than the MSD/LSC synthesis problem that we consider.

7 Conclusion and Outlook

We presented a novel compositional synthesis technique for scenario-based spec-
ifications, which makes use of the assume-guarantee paradigm. The technique
allows engineers to decompose the problem of synthesizing a controller for an
MSD specification into two synthesis problems that can be solved independently
from each other. This can significantly reduce the overall computation time for
synthesizing the controllers. We provided a soundness proof and some evaluation
results that document the benefit of our technique.

A limitation of our technique is that we currently allow only for one controller
to make assumptions about the other. The reasons for this lies in the nature of
liveness properties: a violation of a liveness property cannot be pinpointed to
a specific point of the run at which it is violated. Therefore, if both controllers
violate some assumptions which are liveness properties, it is not clear which one
violated its assumption first. If there were cyclic assumptions and guarantees
concerning liveness properties, each controller could blame the violation on the
other. Therefore, no component would need to guarantee anything.

There are different ways of dealing with this problem. One idea is applying
a concept for composing controllers proposed in [I1]. This concept relies on
explicit dependency graphs between the involved assume-guarantee properties of
a components, which need to stay acyclic when combining components. Another
idea would be to apply the compositional synthesis technique of Chatterjee and
Henzinger [4] (see also Sect. [6), if by using the described abstraction techniques
the co-synthesis problem can be sufficiently simplified.
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