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Abstract—Modern software-intensive systems often have to be
updated to adapt to unpredicted changes in their environments
or to satisfy unpredicted requirement changes. Many systems,
however, cannot be easily shut down or are expected to run
continuously. Therefore, they must be updated dynamically, at
run-time. Especially for critical systems, dynamic updates must
be safe and performed as soon as possible. We recently studied
the relationship between specification changes and dynamic
updates and defined a criterion for when a system can safely
disregard its current obligations and how it should change its
behavior to satisfy the new specification. In this paper, we
study further examples that show that stronger and weaker
variants of our original criterion are relevant when engineering
dynamically updating software. We formalize these criteria and
discuss their safety. Moreover, we provide a tool for synthesizing
dynamically updating controllers from changes in scenario-based
specifications that respect the new criteria.

Index Terms—dynamic updates; scenario-based specification;
update criteria;

I. INTRODUCTION

Modern software systems are subject to continuous, often
unanticipated changes. Changes may occur in the environment
in which the system is operating, or in the requirements, when
new functionality is added or the existing functionality is
modified. To incorporate these changes, the system is typically
updated offline, which means shutting it down, updating, and
restarting it. However, many of these systems, from financial
information systems to autonomous vehicles, are required
to run continuously and cannot be shut down at any time.
Therefore, their implementation must be updated dynamically,
at run-time. Especially in critical applications, updates must be
safe and, moreover, we wish to perform updates as soon as
possible, so that the system can quickly adapt to environment
changes or can incorporate new, critical requirements.

We consider open reactive systems where a system in
an uncontrollable environment is controlled by a finite-state
controller. The system controller implements a specification
consisting of requirements and environment assumptions. The
requirements describe which sequences of events are allowed
in the system and the environment assumptions describe which
sequences of events can occur in the environment.

In recent work, we introduced a new specification-oriented
perspective for the design of dynamically updating con-
trollers [1] and defined a fundamental criterion for correct
updates. If there is a change in the specification, this criterion
defines in which state the system is updatable, i.e., where it
can safely disregard the obligations given by the current spec-
ification and start behaving according to the new specification.

According to this criterion, dynamic updates are guaranteed
to be equivalent to an offline update (in terms of the events in
the specification). Under the assumption that an offline update
is safe, which especially means that a system can be safely shut
down and restarts in its initial state, we argue that dynamic
updates satisfying this criterion are also safe.

We also elaborated a constructive technique for automat-
ically synthesizing a dynamically updating controller from
changes in formal scenario-based specifications [1], [2]. This
technique was implemented within SCENARIOTOOLS, our tool
suite for the design of scenario-based specifications.

In the course of our work, however, we discovered that there
are specification changes for which the dynamic update behav-
ior desired by an engineer is not allowed by our fundamental
criterion or is not supported by our constructive technique.

In this paper, we introduce and formalize additional criteria
for correct dynamic updates that are relevant when engineering
dynamically updating systems. With the help of motivating
examples, we present typical kinds of specification changes
for which these criteria guide the engineer in designing the
desired update behavior.

First (1), we show that there are cases where dynamic
updates lead to different behaviors while still corresponding to
an offline update, therefore being safe. States where different
update behaviors are possible we call poly-updatable, and an
engineer could choose the adequate update behavior.

Second (2), we define the criterion of weak updates that
identifies a larger number of updatable states. This criterion
allows for more timely dynamic updates where otherwise,
according to our fundamental criterion, they would only be
allowed much later.

Third (3), we show that a system can be in a cycle where,
according to our fundamental criterion, we cannot guarantee



that it will ever reach an updatable state. We therefore intro-
duce the criterion of cycle-agnostic updates, that introduces
additional opportunities for performing updates when the new
specification changes this cyclic behavior.

We show that weak and cycle-agnostic updates are not
equivalent to an offline update. The emerging behavior may
therefore in some cases not be safe, but the criteria are
sufficiently restrictive to rule out unsafe dynamic updates
in many cases. Still, the design process should include a
subsequent validation step, which we sketch as an outlook.

Finally, we extend our constructive technique for creating
dynamically updating controllers to consider the new criteria.
This allows us to automatically synthesize controllers that
exhibit the desired update behavior for typical kinds of speci-
fication changes. We prototypically implemented the extended
approach in SCENARIOTOOLS.

The paper is structured as follows: Sect. II provides the
foundations and summarizes our fundamental criterion for
updatable states and correct updates. We introduce and for-
malize poly-updatable states in Sect. III, weakly updates in
Sect. IV, and cycle-agnostic updates in Sect. V. We overview
our constructive synthesis technique and its implementation in
Sect. VI. In Sect. VII we discuss related work and conclude
in Sect. VIII.

II. FOUNDATIONS

We recently introduced and formally defined a criterion
for safe dynamic updates with respect to changes in the
specification [1]. We provide a summary of this work as
the foundations of this paper. Based on an example, we first
present the intuitive idea of safe dynamic updates. Then we
report the formal definitions of our previous work that will be
used throughout the paper.

A. Evolving Specifications and Safe Dynamic Updates

In our previous work, we considered an evolving spec-
ification of the RailCab system1. In the RailCab system
autonomous vehicles, called RailCabs, transport goods and
passengers on demand.

As an example, we considered a scenario of a RailCab
approaching a crossing, see Fig. 1(a). When approaching the
crossing, the RailCab observes certain environments events in
a certain order, which correspond to certain points it passes on
the track. The scenario starts when the RailCab detects that
it approaches the end of the current track section (endOf-
TS). Next, it passes the points lastBrake, lastEmer-
gencyBrake, noReturn, and enterNext. The event
enterNext represents the RailCab entering the crossing, and
noReturn is the point beyond which the RailCab cannot
be stopped anymore from entering the crossing. Between
lastEmergencyBrake and noReturn, the RailCab can
only by applying the emergency brakes come to a stop before
the crossing. Between lastBrake and lastEmergency-
Brake is the last time when the RailCab can avoid entering
the crossing by a normal braking procedure.

1“Neue Bahntechnik Paderborn”, http://www-nbp.upb.de
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Fig. 1. A RailCab approaches a crossing

We consider that the system is currently running, re-
alizing the following requirements. After endOfTS the
RailCab must request the crossing control the per-
mission to enter (requestEnter), which must re-
ply whether entering the crossing is allowed or not
(enterAllowed(true/false)). The reply must be sent
before lastBrake so that the RailCab can brake normally
in the case that entering the crossing is not allowed. For
simplicity, we assume that the RailCab and the crossing control
are controlled by a global controller that implements only the
described scenario; this controller is in its initial state before
endOfTS.

Now suppose that it was observed that in the case of a
power outage the RailCab may enter a crossing while the
crossing control could not shut the barriers, thus increasing
the risk of accidents. To avoid this situation, the requirements
are changed. It is now additionally required that the RailCab
must check the crossing’s operational status by sending the
message checkCrossingStatus to the crossing control,
which must in turn reply with its status via the message
crossingStatus(s:Status). This interaction shall take
place not immediately, but some time after endOfTS, and
before lastEmergencyBrake. To trigger this interaction
later, another signal was installed on the track, called ap-
proachingCrossing. The RailCab will pass this point af-
ter endOfTS and before lastBrake. Figure 1(b) illustrates
the additional requirement and the additional environment
event.

To fulfill the new requirements, we can perform an offline
update. This requires first to shut down the system, to install
the updated controller, and to restart it in its initial state.
However, this cannot be done while the RailCab is approach-
ing the crossing. Obviously, shutting down the RailCab while
it is moving would not be safe. But even if this was not a

http://www-nbp.upb.de


problem, within the scenario, shutting down the system would
mean that the system would forget critical obligations, for
example having to send the requestEnter message after
endOfTS. Therefore, we must continue running the system
with its current implementation until it completes the scenario
of passing the crossing. An offline update can thus not prevent
an accident in the case of a power outage on the current
crossing.

To avoid deadly accidents, instead we would like to update
the RailCab to the new behavior dynamically, at run-time.
Moreover we would like to update the system as soon as possi-
ble, even and especially if a RailCab is currently approaching
a crossing.

We define updatable states to be states where the system
can disregard the current specification and continue behaving
according to the new specification in such a way that we can
ensure a behavior that is equivalent to an offline update (in
terms of the observable events). The arrows at the bottom of
Fig. 1(b) illustrate which states in the scenario are or are not
updatable.

Performing a dynamic update before endOfTS is possible
because, obviously, changing the implementation when the
controller is in its initial state, before the scenario starts,
corresponds to an offline update. After endOfTS and before
lastBrake, no dynamic update can be performed. The
problem is that the specification implemented by the current
controller does not contain the event approachingCross-
ing. Therefore we must conclude that the current controller
is not aware of this event. This make it impossible to be-
have equivalently to an offline update; if we assume that
approachingCrossing did not yet occur while instead it
did, the RailCab will never send checkCrossingStatus.

After lastBrake occurred, and because we know that
approachingCrossing must have happened before that,
the RailCab is again in an updatable state. We can update to a
controller that implements the new behavior, into a state where
checkCrossingStatus is sent next. After lastEmer-
gencyBrake occurred, there is no updatable states until the
end of the scenario, because the RailCab should have checked
the crossing status before.

B. Correct Dynamic Updates
We give preliminary definitions in Sect. II-B1 before defin-

ing updatable states and correct updates in Sect. II-B2.
1) Object Systems, Controllers, Runs, Specifications: We

consider systems of objects that exchange messages as defined
by Harel and Marelly [3]. We only consider synchronous
messages.

Definition 1 (Object system, message event, alphabet, run).
An object system consists of a set of objects O that exchange
messages. A message has a name and a sending and receiving
object (i.e., it is assumed to be point-to-point). The sending
and receiving of a message is a single event, also called a
message event. The alphabet Σ is the set of different message
events that can occur in an object system. An infinite sequence
of message events π ∈ Σω is called a run of the system.

The objects in the system are controlled by a controller. A
controller can control one or more objects, but one object can
only be controlled by one controller.

Definition 2 (Controller, trace language). A controller is a
finite state machine without final states: a finite state machine
is a quadruple (Σ, Q, q0, T ), where Q = {q0, . . . , qn} is a
finite set of states, q0 is the start state (or initial state) and
T ⊆ Q × Σ × Q is a transition relation. For a controller c,
L(c) ⊆ Σω is the trace language of c. A run π = (m0,m1, . . .)
is an element of L(c) iff there exists a sequence of states
starting from the start state of the controller (q0, q1, . . .) ∈ Qω

such that ∀i ≥ 0 : (qi,mi, qi+1) ∈ T .

A controller can also consist of the parallel composition
of two controllers that control disjoint subsets of objects.
The composed controllers synchronize on message events sent
between an object in one set to an object in the other set. The
parallel composition is defined in the usual way.

Definition 3 (Parallel composition). Let c1 =
(Σ1, Q1, q01 , T1) and c2 = (Σ2, Q2, q02 , T2) be two
controllers for disjoint sets of objects. Furthermore, let Σ1

only be such events where the sending or receiving object
is controlled by c1 and Σ2 only be such events where the
sending or receiving object is controlled by c2. The parallel
composition of c1 and c2, written c1||c2, is equivalent to
a controller (Q1 × Q2, (s01 , s02),Σ1 ∪ Σ2, T1||T2) where
Q1 × Q2 is the set of all possible tuples of Q1 and Q2, and
T1||T2 is a transition relation defined as follows:

1) ((s1, s2),m, (s′1, s2)) ∈ T1||T2 if there is a transition
for the event m in controller c1, (s1,m, s

′
1) ∈ T1, and

m is not sent or received by any object controlled by
c2, m /∈ Σ2.

2) ((s1, s2),m, (s1, s
′
2)) ∈ T1||T2 if there is a transition

for the event m in controller c2, (s2,m, s
′
2) ∈ T2, and

m is not sent or received by any object controlled by
c1, m /∈ Σ1.

3) ((s1, s2),m, (s′1, s
′
2)) ∈ T1||T2 if there is a transition

for the event m in both controllers, (s1,m, s
′
1) ∈ T1

and (s2,m, s
′
2) ∈ T2.

Last, we define a specification and when a system satisfies
and implements it.

Definition 4 (Specification, satisfying a specification). A spec-
ification S is a tuple (A,R) with the assumptions A and
the requirements R being sets of runs. A run π satisfies the
specification S, written π |= S iff π ∈ A⇒ π ∈ R, i.e., if the
run is in the assumptions, it must also be in the requirements. A
run is also said to be admissible with respect to a specification
iff it satisfies this specification. A controller c satisfies S,
written c |= S, iff each run in L(c) satisfies S.

Definition 5 (System and environment objects). The objects
of the system can be either controllable system objects or
uncontrollable environment objects. For a controller of the
environment objects we require that in every state there are
outgoing transitions by which it can receive all events sent



from system objects to environment objects. For a controller
of the system objects we require that it infinitely often is in
a state with outgoing transitions by which it can receive any
event sent from environment objects to system objects.

Intuitively, this means that the environment can never block
any event occurring in the system. Conversely, the system can
perform any finite number of steps before the next environment
event occurs2.

Definition 6 (Implementation). A controller c for all the
system objects implements or realizes S iff c composed with
every possible controller e for the environment objects satisfies
S, more formally ∀e, e||c |= S.

In the scope of this paper, we consider a setting where all
system objects are controlled by a single controller, also called
the global controller.

2) Histories and Updatability: Our definition of updatable
states is based on the notion of the recent histories of a state,
which are all the possible sequences of events leading to a
state of a controller since it last visited the initial state.

The definition of updatable states requires the following two
conditions. Intuitively, first, it must be possible to complete all
recent histories to a run which satisfies the new specification.
How a recent history is completed depends on what happens in
the environment, so a “completion” is a set of many possible
sequences of events. To reflect this, the definition requires the
existence of a controller implementing the new specification
and where all the recent histories of updatable states are
prefixes of runs of this controller.

The second condition requires that there must not be any
confusion on how to continue the execution, which means that
a continuation of one recent history must also be a possible
continuation for any other recent history.

To determine the possible recent histories of a state in the
controller, we must also include what we assume has possibly
happened in the environment; the system controller may not
capture everything that happens in the environment.

The possible environment behavior is described in the
environment assumptions. Without loss of generality, we as-
sume that changes in the environment assumptions reflect new
insights in how the environment is already behaving right now.
We therefore determine the possible recent histories based on
any environment e′ that implements the changed environment
assumptions A′. 3

Definition 7 (histories, recent histories). We consider the
composition of c with every possible controller for the en-
vironment e′ that satisfies the assumptions of S′ such that
L(e′||c) ⊆ A′. The histories Πpast(c, qccur

) are the paths

2Def. 5 is not essential for the definition of our criteria, but adopted in
our approach [1] and our tool. We could for example also consider a setting
where the environment always has priority over the system, but this would then
require us to formulate more assumptions about the environment explicitly.

3If the new environment assumptions describe changes in the environment
behavior that will only occur during or after the update, then the old
environment assumptions must be considered to determine the possible recent
histories.

from the start state of e′||c to a state where c is in qccur
,

Πpast(c, qccur ) = {(m1, ..,mn) ∈ Σ∗ s.t. ∃(q0, .., qn) ∈
(Qe′ × Qc)

∗, q0 = (qe′0 , qc0), qn = (qe′n , qccur
) and ∀i ∈

{0, .., n} : (qi,mi, qi+1) ∈ Te′ ||Tc}. The recent histories
Π<

past(c, qccur
) are such histories where the start state is not

visited a second time, i.e., ∀i > 0 : q0 6= qi.

Based on the possible recent histories, we define updatable
states of a controller with respect to a changed specification
as follows.

Definition 8 (Updatable state, correct update). A state qcur
of a system controller c is updatable to a specification S′ iff
there exists a controller c′ that implements S′ and where the
composition with any possible environment controller e′ has
a trace language L(e′||c′) where

1) for every recent history π<
past ∈ Π<

past(c, qccur ) there
must be a run π ∈ L(e′||c′) where π<

past is a prefix of
π. In other words, there must exist a continuation of
any possible recent history, which we call πfuture, that
concatenated with π<

past forms π, ∃πfuture ∈ Σω : π =
π<
past · πfuture.

2) If πfuture is a continuation of some possible recent his-
tory, it must also be a continuation of any other possible
recent history, ∀π<1

past, π
<2
past ∈ Π<

past(c, qccur
), π<1

past 6=
π<2
past : π<1

past · πfuture ∈ L(e′||c′) ⇒ π<2
past · πfuture ∈

L(e′||c′)
A system with controller c in an updatable state qupdate
performs a correct update to satisfy the changed specification
S′ iff the sequence of events that occurred since c was in the
initial state for the last time will be completed to a run that
satisfies S′.

Depending on the requirements change, there can be more
or less updatable states. Our definition of updatable state
implies that the initial state of a system is always updatable.
To guarantee that a dynamic update will eventually take place,
we assume that system controllers typically visit their initial
state periodically so that eventually an update will always be
possible.

III. LONGER HISTORIES AND POLY-UPDATABLE STATES

Let us consider a new example of a possible specification
change for the RailCab system. A current specification again
describes what shall happen when a RailCab approaches a
crossing, see the top of Fig. 2. Now, additionally, the engineers
would like the RailCab to regularly perform a procedure for
autonomously checking the wear-off of its wheels by using on-
board scanners. Such a procedure can be costly, because the
RailCab needs to slow down to a steady moderate speed for
scanning the surface of the wheels. For this reason, imagine
that the engineers decide to perform the scanning procedure
when approaching and before effectively entering every third
crossing. The lower part of Fig. 2 illustrates the checking
procedure by a self-message checkWheels on the RailCab
that shall take place between endOfTS and enterNext
before the third crossing.
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Fig. 2. The RailCab autonomously checking its wheels’ wear-off when
approaching every third crossing

Assuming that a current controller does not remember or
count the number of crossings it already approached, the recent
histories of any state of the current controller will always
reflect that the RailCab just approaches its first crossing. Based
on this notion of recent histories, all states of the current
controller would be updatable and, if the RailCab approaches
a crossing (between endOfTS and enterNext), we could
update the behavior so that the wheels-checking procedure
can take place when approaching the third crossing after the
dynamic update; this is illustrated by the dashed arrow labeled
“1” in Fig. 2.

However, the recent histories reflect the notion of a “most
recent” corresponding offline update. Could we not assume
that the RailCab already approached another crossing or two
other crossings before? This could then lead to the dynamic
update behavior illustrated by the dashed arrows labeled “2”
and “3” in Fig. 2.

Intuitively, all these alternatives correspond to offline up-
dates, but an engineer may for example wish to decide that

the wheels-checking procedure is critical and shall take place
as soon as possible. In this case the engineer would like to
choose the update alternative “3”. If, however, the procedure
is costly and not urgent, the engineer may want to choose
update alternative “1”.

We call states from where different updates are possible
with respect to more or less recent histories poly-updatable
states. They are defined more formally by extending Def. 8
with the notion of level-x histories, which are histories that
visit the initial state of the current controller x-many times.

Definition 9 (Level-x histories). For x ∈ {1, . . . , n} and a
state qcur of a controller c, Πx

past(c, qcur) denotes the set of
histories (see Def. 7) that visit the initial state of c x-many
times.

The level-1 histories are the histories that visit the initial
state only once, at the beginning, and are thus equivalent to the
recent histories. The level-2 histories are all histories that visit
the initial state one more time, etc. To define poly-updatable
states, we first generalize (by a slight change) the definition
of updatable states to define what it means for a state to be
updatable with respect to a particular subset of histories.

Definition 10 (Updatable state w.r.t. a subset of histories). A
state qcur of a system controller c is updatable with respect to
a given subset of histories Π⊆past(c, qcur) ⊆ Πpast(c, qcur) to a
specification S′ iff there exists a controller c′ that implements
S′ and where the composition with any possible environment
controller e′ has a trace language L(e′||c′) where

1) for every history in the given set πpast ∈ Π⊆past(c, qcur)
there must be a run π ∈ L(e′||c′) where πpast is a
prefix of π. In other words, there must exist a continu-
ation of any given history, which we call πfuture, that
concatenated with πpast forms π, ∃πfuture ∈ Σω : π =
πx
past · πfuture.

2) If πfuture is a continuation of some given history, it
must also be a continuation of any other given history,
∀π1

past, π
2
past ∈ Π⊆past(c, qcur), π1

past 6= π2
past : π1

past ·
πfuture ∈ L(e′||c′)⇒ π2

past · πfuture ∈ L(e′||c′)

We now define poly-updatable states as follows.

Definition 11 (Poly-updatable state). A state qcur of a system
controller c is poly-updatable to a specification S′ if it is
updatable to specification S′ w.r.t. the level-1 histories of qcur
and if it is updatable to specification S′ w.r.t. at least one set
of level-x histories, x ∈ {2, . . . , n}.

In other words, a state is poly-updatable if it is updatable
in the original sense, and if it is furthermore updatable to
some other level-x history with x ∈ 2, . . . , n. The definition
of a correct update in Def. 8 can remain unchanged. In the
example, the illustrated state is poly-updatable, because it is
level-1, -2, and -3-updatable.

If we report to the engineer that a state is poly-updatable, it
may not be easy for the engineer to choose which alternative is
adequate. If the requirements and the current implementation
are more complex, an engineer may desire to simulate the



different behaviors resulting from different choices. We are
planning to extend SCENARIOTOOLS in the future in order to
support such simulations, but do not consider this in the scope
of this paper.

IV. SHORTER HISTORIES AND WEAKLY UPDATABLE
STATES

Suppose that now, to increase the safety of our system, we
change the requirement to check the wheels’ wear-off before
each third crossing to the requirement to check the wheels
before every crossing. Figure 3 illustrates how, according to
our original definition of updatable states (Def. 8), the current
RailCab controller would be updatable in a state where it did
not yet enter the first crossing. By “first” we again refer to
the fact that the current controller does not remember how
many crossings it really approached before, but just counts to
three and then starts over again. After the first occurrence of
enterNext, according to our initial definition, it is too late
for an update, because we did not do the checkWheels as
would have been required by the new specification.

Intuitively, however, why should we not perform the update
when the current controller approaches the second crossing?
If checking the wheels is critical, shouldn’t we better do it
now than wait until the next crossing?

To support timely updates in such cases, we propose an-
other, weaker criterion for updatable states. The basic idea of
our new criterion is to find the same “pattern” of states that
are updatable in the sense of Def. 8 also in other parts of the
current controller and allow dynamic updates from these states
under certain conditions.

More formally, this works as follows. First, we determine
which states in the current controller are updatable in the
original sense of Def. 8. Then we check if there exist other
states in the controller that are “similar” to the initial state
and the updatable states. We call these states co-initial and
co-updatable states. They must be similar in the sense that for
every co-updatable state we require that there exists a transi-
tion sequence from the co-initial state to the co-updatable state
accepting every possible recent history of the corresponding
updatable state.

Definition 12 (Co-initial state, co-updatable state, shorter
histories). A state qco−init of a system controller c =
(Σc, Qc, qc0 , Tc) is co-initial with respect to a new specifica-
tion S′ iff there exists a non-empty set of states Qupdate ⊆
Qc updatable to S′ and for every qupdate ∈ Qupdate

there exists a co-updatable state qco−update ∈ Qc such
that Π<

past(c, qupdate) ⊆ Π
qco−update
qco−init , where, Π

qco−update
qco−init =

{π ∈ Σ∗|(qi,mi, qi+1), . . . , (qj ,mj , qj+1) ∈ T ∗c , qi =
qco−init, qj+1 = qco−update,mi, . . . ,mj = π}. I.e., the recent
histories of qupdate are a subset of the event sequences
accepted by all possible transition sequences between qco−init
and qco−update. We denote the set of co-updatable states
for a co-initial state qco−init with Q

qco−update
qco−init . We also call

Π
qco−update
qco−init the shorter histories of qco−update with respect to

its corresponding co-initial state qco−init.
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Fig. 3. Instead of checking the wheels’ wear-off when approaching every
third crossing, it should now happen before every crossing

We call the co-updatable states weakly updatable if they are
updatable with respect to their shorter histories (see Def. 10).

Definition 13 (Weakly updatable state, correct weak update).
A co-updatable state qco−update ∈ Q

qco−update
qco−init for a co-initial

state qco−init of a current controller c and with respect to a
specification S′ is weakly updatable iff it is updatable to S′

w.r.t. the shorter histories Π
qco−update
qco−init .

We finally define correct weak updates as follows.

Definition 14 (Correct weak update). A system with controller
c in a co-updatable state qco−update performs a correct weak
update to satisfy the changed specification S′ iff the sequence
of events that occurred since c was in the co-initial state
corresponding to qco−update for the last time will be completed
to a run that satisfies S′.

In the example shown in Fig. 3, we could find the same
“pattern” of updatable states for example also if the RailCab
is in front of the second crossing and we can perform a



weak update here. Before the third crossing, the system
would also be weakly updatable because in this scope the
system is already doing exactly what is required by the new
specification. If checkWheels was not allowed in the new
specification, the system would only be weakly updatable
before checkWheels occurred.

While in our previous criteria for updatable states and
correct updates we always guarantee that the resulting dynamic
update behavior corresponds to some possible offline update,
this is not true anymore for this more relaxed criterion.
In fact, there are cases of correct weak updates that are
unsafe. As the following intuitive example illustrates, we may
create a dynamic update behavior where the old controller is
abandoned in a state where critical obligations remain that are
then not fulfilled by the new controller.

Consider a controller for the cooling system of a nuclear
power plant that for a maintenance procedure stops and
restarts a pump for the cooling agent. The current specification
says that it is critical that whenever the pump is stopped,
it must also be restarted again. In the new specification a
new maintenance procedure may be adopted, which may not
require starting and stopping the pump anymore. But still,
we keep the requirement to always restart a stopped pump.
Now imagine further that we identified some updatable and
co-updatable states in the current controller where some of
these are located before the pump is stopped, but some are
located after the pump has stopped but before the pump was
restarted; for these states, the shorter histories do not capture
the fact that the pump was stopped. If we update from one of
these states to a new controller that will not restart the pump,
this may result in a devastating accident.

For this reason, we recommend that the design of dy-
namically updating controllers based on the weak update
criterion includes a subsequent validation of the controllers.
We envision such a validation to be supported by a tool that
automatically generates traces of potentially unsafe dynamic
updates from a dynamically updating controller and allows
the engineer to determine whether the possible update is
safe or should not be applied. The decision of an expert
is required, since there are no formal properties that we
could verify here that, if they were relevant, would not be
included in the specification. Potentially unsafe update traces
are such traces where the dynamically updating controller
violates properties in the current or new specification, but
especially where it violates those that remain invariant during
the specification change. These traces can be generated for
example using model-checking techniques, as used for test
case generation [4], [5]. The details of such a technique,
however, remain an outlook of this paper.

V. CYCLE-FREE HISTORIES AND CYCLE-AGNOSTIC
UPDATABLE STATES

For our fundamental criterion, to guarantee a system to be
always eventually updatable, we assumed a system with a
repetitive behavior by which it periodically visits its initial
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Fig. 4. New requirement: If after the bars were closed the RailCab is still
not allowed to enter the crossing, it should report a problem

state. However, there are also systems with a repetitive be-
havior that does not necessarily lead the system into its initial
state. For example, there are systems with a periodic behavior
with an initialization procedure that is only executed once.
Consider that now we change the specification to change or
add certain steps within this repetitive behavior. According
to our fundamental criterion, this is in general not possible
because this criterion requires to consider previous iterations
in this periodic behavior, which did not yet incorporate the
changes, and will thus violate the new specification. Even
worse, it may not be guaranteed that the system will eventually
reach an updatable state again.

As an example consider the following case. Suppose that
the current controller implements a requirement saying that
if a request to enter a crossing is denied, then it should,
maybe after some delay, request the permission to enter again.
If for some reason the crossing control always denies these
requests, it may lead to a cyclic behavior where the current
controller does not visit the initial state again. The top of Fig. 4
illustrates this. At the bottom, the figure shows that now the
requirements are changed. They additionally require to report a
problem to a region control, a component to supervise regions
in the RailCab track system, if a previous request to enter the
crossing was denied, then the bars of the crossing closed, and
then a repeated request to enter the crossing is denied again.

The problem in this case is that our previous notion of recent
histories will indeed only consider such histories that visit
the initial state only once, but will, in the presence of cycles
not involving the initial state, contain all event sequences that
correspond to looping in these cycles arbitrarily often. As a
consequence, if the RailCab in the above example is in a



state where it already received an enterAllowed(false)
message, the recent histories will contain traces where this has
already happened an arbitrary number of times. If then the
current controller does not observe whether the barsClosed
events already happened or not, or it does observe this event,
but does not send reportProblem, many possible recent
histories will already violate the new requirement. Therefore,
dynamic updates in the sense of our fundamental notion
(Def. 8) will not be possible, and may never again be possible
unless we assume that eventually the RailCab will leave this
cycle and eventually visits its initial state again.

The criterion for weak updates is not tailored for this kind
of specification change, because it would requires to find co-
initial and co-updatable states that form a “pattern” similar to
the initial state and the updatable states within the cycle. In
this example, for instance, no such pattern exists.

We therefore introduce the criterion of cycle-agnostic up-
dates, which describes how to achieve the desired dynamic
update behavior for these kinds of specification changes. The
criterion is based on the notion of cycle-free recent histories,
which capture all the possible past sequences of events since
the system last visited its initial state and did not yet iterate
through any cycles.

Definition 15 (Cycle-free recent histories). For a state qcur of
a controller c = (Σc, Qc, qc0 , Tc) the set of cycle free recent
histories of qcur, denoted by Π<CF

past (c, qcur), is a subset of the
recent histories of qcur, Π<CF

past (c, qcur) ⊆ Π<
past(c, qcur), for

which there exists a corresponding transition sequence in c
from qc0 to qcur that visits any state at most once.

Our definition of cycle-agnostic updatable states is again
based on Def. 10 with respect to the cycle-free recent histories.

Definition 16 (Cycle-agnostic updatable state). A state qcur
of a system controller c is cycle-agnostic updatable to a
specification S′ iff it is updatable to S′ w.r.t. the cycle-free
histories Π<CF

past (c, qcur).

The definition of a correct cycle-agnostic update is as
follows.

Definition 17 (correct cycle-agnostic update). A system with
controller c in a cycle-agnostic updatable state qupdate per-
forms a correct cycle-agnostic update to satisfy the changed
specification S′ iff any cycle-free recent history of qcur will
be completed to a run that satisfies S′.

Back to our example in Fig. 4. If we assume that the
system is in a state of the cycle after it receives enter-
Allowed(false), the cycle-free recent histories only con-
sider that the RailCab received enterAllowed(false)
for the first time, even though it may have iterated though the
cycle many times. According to the criterion of cycle-agnostic
updates, we can now perform the update and introduce the
report problem mechanism into the loop as desired.

Since the considered cycle-free recent histories are only
a subset of all the recent histories, the criterion of cycle-
agnostic update is a relaxation of our fundamental criterion.

For some recent histories the dynamic update behavior may
not correspond to an offline update and can therefore not
guaranteed to be safe. As we discussed in Sect. IV for weak
updates, the application of cycle-agnostic updates requires
additional validation support to guide the engineer in ensuring
the safety of the desired update behavior.

VI. SYNTHESIS TOOL

We elaborated a constructive technique for automatically
synthesizing dynamically updating controllers from a given
current controller and a specification change [1]. Recently, we
implemented this technique as an extension of SCENARIO-
TOOLS, our novel, Eclipse-based design, simulation, and syn-
thesis tool suite for scenario-based specifications [2]. In the
scope of this paper, we extended the constructive approach
and our tool to the new criteria. Our tool currently supports
finding poly-updatable states and the corresponding alternative
update behaviors. Furthermore, it supports the synthesis of
a dynamically updating controller based on the criterion for
cycle-agnostic updates. The support for weak updates is still
under development. The tool and examples can be downloaded
from our website 4.

In our constructive technique, we consider specifications
in the form of Modal Sequence Diagrams (MSDs) [6], a
variant of Live Sequence Charts (LSCs) [7]. MSDs allow us
to formally specify which sequences of events may, must, or
must not occur in the running system. An MSD specification
evolves by adding or removing MSDs.

In summary, the constructive technique works as follows.
For more information, we refer to our technical report [2].
Given the controller c implementing the current specification
S and the new specification S′, we first synthesize a new
controller c′ implementing S′. To do this, we implemented
an efficient incremental algorithm which synthesizes the new
controller c′ on the basis of the current implementation. The
incremental synthesis is guided by the actions by which
the current controller could successfully satisfy the current
specification. If the specification change is evolutionary, the
incremental synthesis can be significantly more efficient that
a non-incremental synthesis. Moreover, it synthesizes a con-
troller for the new specification that is similar to the current
controller so that, as described below, we can in many cases
identify all updatable states.

We then identify the history relation between states in c
and c′. A pair of states belongs to the history relation if every
recent history of the first element in the pair is also a recent
history of the second. This is done by first computing the
pairs of states of the controllers c and c′ which have at least
one common recent history. The resulting pairs are called the
candidate pairs of the history relation. Next, we gradually
remove such pairs (q, q′) where q has at least one predecessor
via an incoming transition labeled with some event m that
does not form a candidate pair with a state from c′ where a
transition labeled with m leads to q′. One special case is the

4http://www.scenariotools.org
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pair formed by the initial states of the two controllers, which
we never remove. Eventually all the remaining pairs form the
history relation.

The dynamically updating controller can now be formed by
combining the current controller c, and the new controller c′.
From the history relation, we then identify all the updatable
states in the current controller and derive update transitions,
which map each of these states to a corresponding target state
of the c′-part of the combined controller. The dynamically
updating controller can be deployed in the running system by
extending the running current controller with the update tran-
sitions and the c′ controller. Then, when the current controller
reaches an updatable state, its update transition is immediately
taken. From then on the execution will be completed by c′-part
of the dynamically updating controller.

We extended our original approach to identify all the states
in the current controller that are poly-updatable and cycle-
agnostic updatable. The identification of poly-updatable states
requires a generalization of the history relation which must
also include the state pairs reached by the same level-x
histories with x ∈ 2, . . . , n. We then continue the exploration
of possible target states in the new controller with a recent
history that is equivalent to some level-x history of the current
controller with x > 1.

For the identification of cycle-agnostic updatable states we
only need to consider pairs of states (q, q′), q being a state
of c and q′ being a state of c′, where all cycle-free recent
histories of q are also recent histories of q′. To do this, we
modify the computation of the history relation as follows. We
first compute all the candidate pairs as explained above. Then,
also as before, we gradually remove such pairs (q, q′) where q
has at least one predecessor via an incoming transition labeled
with some event m that does not form a candidate pair with a
state from c′ where a transition labeled with m leads to q′. In
this process, however, we ignore predecessors of q for which
we previously determined that they can only be reached by
a previous visit of q. This predecessor of q can be ignored,
because it at the same time is a successor of q, and can
therefore only be visited in a cycle.

VII. RELATED WORK

Dynamic software updates have been studied in the past
in different areas of research. In the area of programming
languages, different approaches have been proposed to perform
dynamic updates of Java applications [8]–[10] and C pro-
grams [11], [12]. These approaches, however, do not consider
when a dynamic update is correct with respect to changes
in the specification of a program. If program specifications
are provided, our correctness criteria, which are independent
from a specific programming language, could extend these
approaches to reason about the correctness of updates.

Other approaches focus on identifying under which con-
ditions a system can be correctly updated. Early works re-
quired that procedures affected by the changes to be currently
idle [13], [14]. Later, Gupta et al. [15] defined that an update
of a program is valid if the current run-time state of the old

program is also a reachable state of the new program. Our
notion of updatable state is similar, but we consider the states
of different finite state machines and system specifications and
more generally argue over the sequences of events.

Recent techniques were proposed to test dynamically up-
dating programs [16] or to verify their correctness [17]. In
both these approaches the update points are specified manually.
Criteria for automatically finding allowable update points are
not considered, nor is any relationship between updates and
specifications changes defined.

Dynamic updates were also studied in the area of dynam-
ically reconfiguring component-based systems [18]–[22]. The
criteria introduced by Kramer and Magee [18], Vandewoude et.
al [19], and Ma et. al [20], enable safe dynamic reconfiguration
of components. These criteria, however, may be too restrictive
because the component to be updated is required to be in a
state where no interactions are currently active. The updatable
states resulting by our criteria, instead, allows for more timely
dynamic updates. Chaki et al. define that a component can
be updated if it still provides the same functionality of the
old [21]. This, however, implies that the specification cannot
become more restrictive. Giese et al. proposed a formalism
based on state charts and regard mainly the reconfiguration
of continuous controllers [22], but this approach does not
consider the validity of updates with respect to specification
changes.

In the area of self-adaptive systems, different approaches
have been elaborated to modeling and verifying adaptive
software [23]–[26], [26]. These papers propose languages
for specifying software that can reconfigure between a fixed
set of configurations at pre-defined update points. Zhang et
al. propose a formalism for modeling and verifying adap-
tive software which requires the manual definition of update
points [23], [24]. They provide a specification language and
verification support for temporal properties that are invariant
during the adaptation or adaptation-specific. In our approach,
instead, the update points satisfying the introduced criteria
are automatically identified on the basis of the specification
change. Adler et al., propose a framework for developing
dynamically adaptive embedded systems [25], Bouveret et al.,
describe a categorical framework to ensure correct software
evolutions [26], and Fisher et al., propose a formal language
for modeling adaptive software [27]. These approaches, how-
ever, do not consider that certain configurations comply to
certain requirements and that reconfigurations must satisfy
certain conditions with respect to these requirements.

VIII. CONCLUSION

In this paper, motivated by intuitive examples, we intro-
duced and formalized novel correctness criteria for dynamic
updates from specification changes. Depending on the specific
needs of the application and the type of specification change,
the engineer may then choose which criterion to adopt for the
design of a dynamically updating controller.

The criterion of poly-updatable states allows the engineer
to identify states in which there are several alternative ways



to perform safe dynamic updates, where safe means that the
resulting behavior is guaranteed to be equivalent to an offline
update. We also showed that more relaxed updatability criteria
are required for certain kinds of specification changes in order
to allow for dynamic updates that may otherwise be impossible
or would only be performed much later than desired.

Moreover, we extended our constructive synthesis approach
to support a subset of the newly introduced criteria, so
that dynamically updating controllers with the desired update
behavior can be synthesized automatically. We implemented
these extensions within SCENARIOTOOLS.

The relaxed criteria may be unsafe since they do not guar-
antee the dynamic update to be equivalent to an offline update.
Therefore, their applicability should include a subsequent
validation step. We sketched how such a validation could show
potentially unsafe traces to the engineer, who must then decide
whether the update behavior is safe or should be excluded. The
details of such a technique remain an outlook of this paper.

Our constructive synthesis technique currently synthesizes
a global dynamically updating controller for the entire system.
For distributed system, our future goal is to be able to
synthesize distributed dynamically updating controllers that
interact and update to still satisfy our correctness criteria.

Also, we believe that there are yet other updatability criteria
for further kinds of specification changes. Especially, there
may be specification changes that are a combination of multi-
ple different kinds of changes for more or less interdependent
behavioral aspects within a specification. We believe that how
to design or automatically synthesize the desired and safe
dynamically updating controllers in such cases is an interesting
and practically relevant new research direction.
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