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Abstract. Software-intensive systems, for example service robot sys-
tems in industry, often consist of multiple reactive components that in-
teract with each other and the environment. Often the behavior depends
on structural properties and relationships among the system and environ-
ment components, and reactions of the components in turn may change
this structure. Modal Sequence Diagrams (MSDs) are an intuitive and
precise formalism for specifying the interaction behavior among reactive
components. However, they are not sufficient for specifying structural
dynamics. Graph transformation rules (GTRs) provide a powerful ap-
proach for specifying structural dynamics. We describe an approach for
integrating GTRs with MSDs such that requirements and assumptions
on structural changes of system resp. environment objects can be speci-
fied. We prototypically implemented this approach by integrating Mod-
Graph with ScenarioTools. This allows us not only to specify MSDs
and GTRs in Eclipse, but also to simulate the specified behavior via
play-out.

Keywords: scenario-based specification, reactive systems, embedded systems,
automotive, simulation, validation, testing

1 Introduction

In many areas, such as industry and transportation, we find increasingly com-
plex, interconnected, software-intensive systems. In industry, for example, service
robots support workers and decentralized control components control complex
production processes; advanced driver assistance systems in cars rely on the
inter-vehicle communication to realize collision avoidance or vehicle platooning.

As an example, Fig. 1 shows an autonomous robot transport system in a
production plant. Workers at assembly stations can order items to be delivered



assembly1

warehouse1

assembly2 assembly3

 

transport
system
control

order item

assign job

request
access

worker1 worker2

warehouse2

robot1

robot2

robot3

:Job

from
itemKind

assignedTo

issueBy

to

issuedJobs

Fig. 1. Example of an autonomous robot transport system in a production plant

to them by a transport system. Upon receiving an order, the transport system
control assigns a job to a robot, which executes it by requesting access to the
given location (a warehouse), picking up the item, and delivering it.

These systems often consist of multiple, physically distributed mechatronic
components that comprise hardware, mechanical parts, and software. It is the
software which mainly realizes the systems’ complex functionality. The software
processes environment events, performs the coordination of the components, the
interaction with the users, and it acts on the physical environment via actuators.
We therefore view these systems as distributed reactive systems.

The challenge in the design of these systems is that the requirements often
span multiple components, and components may have to satisfy multiple re-
quirements at the same time. To exemplify this, consider a worker that orders
an item: the worker inputs the order via a terminal at the assembly station,
the terminal then notifies the transport system control, which then assigns a
job to a service robot, etc. At the same time, the transport system may receive
notification of a robot’s malfunction and must notify service personnel.

Moreover, the requirements often relate to the system’s structure, which can
be its physical structure or logical structures within or shared among its software
components. For example, which robot the transport system control assigns a
job to depends on the robot’s availability and proximity to the pick-up location
(physical structure). Which warehouse the robot requests access to depends on
the job it received (logical structure). In turn, reactions of the software can
change physical or logical structures. For example, when ordering the robot to
move to a certain location, we can assume that it will eventually arrive there
(physical structure). An example for changes in the logical structure would be
the transport system control creating a job object and assigning it to a robot.

We propose to specify these systems using Modal Sequence Diagrams
(MSDs), a formal interpretation of UML sequence diagrams [10] based on the



concepts of Live Sequence Charts (LSCs) [4]. MSDs allow us to formally, but
intuitively specify sequences of events between system and environment compo-
nents that may, must, or must not happen. One advantage of this formalism is
that the specifications can be executed via the play-out algorithm [11,12]. We
recently extended MSDs and the play-out algorithm to not only consider require-
ments on what the system must to do, but also to support assumptions on what
will and will not happen in the system’s environment [3]. Further extensions
allow us to express simple structural changes - like changes of attribute values -
complex structural changes, however, cannot be modeled adequately.

In this paper, we therefore propose integrating graph transformation rules
(GTRs) with MSDs to eliminate this drawback. We explain the semantics and
the extension of the play-out algorithm by the help of an illustrative example.
The main idea of the integration is straightforward: use GTRs to model side-
effects that messages have on the system structure. However, our integration
goes further: GTRs can also constrain in which structural contexts the system
is allowed to perform certain actions (requirements) and in which structural
contexts certain events can occur in the environment (assumptions). We im-
plemented our approach prototypically by integrating ModGraph4 [19], a tool
for modeling and executing GTRs, and ScenarioTools5 [3], a tool suite that
supports the modeling and play-out of MSDs.

The resulting modeling and analysis approach supports an iterative and in-
cremental specification of message-based interaction behavior and structural sys-
tem reconfiguration behavior. The advantage of the scenario-based approach is
that adding single scenarios to a specification can extend as well as constrain
previously specified behavior [13]. Integrating GTRs adds intuitive means for ex-
pressing structural changes. The declarative style of specifying rules with object-
patterns as pre- and post-conditions, combined with the graphical, color-coded
notation, makes complex changes on the object system easy to understand.

This paper is structured as follows. Section 2 provides the foundations. Sec-
tion 3 then describes the concepts of the integration, and Sect. 4 describes the
tool integration. We discuss related work in Sect. 5 and conclude in Sect. 6.

2 Foundations

In the following, we describe the basics of MSDs and graph transformation rules.

2.1 Modal Sequence Diagrams

MSDs [10] are a formal interpretation of UML sequence diagrams, based on the
concepts of LSCs [4,12]. An MSD specification consists of a set of MSDs. MSDs
can be either existential or universal. Existential MSDs describe sequences of
events that must be possible to occur, universal MSDs describe properties that
must hold for all sequences of events. Here, we focus on universal MSDs only.

4 http://btn1x4.inf.uni-bayreuth.de/modgraph/homepage
5 http://scenariotools.org

http://btn1x4.inf.uni-bayreuth.de/modgraph/homepage
http://scenariotools.org
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Fig. 2. Class diagram of production plant systems and an object diagram of a small
instance system (cf. Fig. 1)

The lifelines of an MSD represent objects in an object system. The objects are
either controllable system objects or uncontrollable environment objects. The set
of environment objects is also called the environment ; the set of system objects
is also called the system.

We consider the object system to be a valid instance of a class model that can
define associations and attributes. Objects then carry attribute values according
to the attribute definitions and there can exist links among the objects according
to the associations. As an example, Fig. 2 shows the class diagram of our factory
system and a possible object system; the object system represents a very simple
plant with one assembly station, one robot, and one warehouse. Environment
objects have a cloud-like shape; system objects have a rectangular shape.

The objects can interchange messages. A message has a sending and receiv-
ing object and refers to an operation that must be defined by the receiving
object’s class. Here we consider only synchronous messages where the sending
and receiving together is a single event, also called message event.



Lifelines of the MSDs each represent an object in the object system. A mes-
sage in an MSD, also called a diagram message, represents a message event in
the object system. The diagram message has a sending and receiving lifeline and
refers to an operation.

A diagram message has a temperature and an execution kind. The temper-
ature can be either hot (red arrow, labeled h) or cold (blue arrow, labeled c);
the execution kind can be either monitored (dashed arrow, labeled m) or ex-
ecuted (solid arrow, labeled e). Intuitively, messages that are monitored may
occur, while messages that are executed must eventually occur. If a message is
hot, it means that when a point is reached in the scenario where this message
is expected, no other event that is expected at another point in the scenario is
allowed to occur.

In order to explain the message temperature and execution kind in more
detail, we must first introduce the concepts of unification, active MSDs and the
cut : We say a diagram message can be unified with a message event if its sending
and receiving lifeline represent the sending and receiving object of the message
event and the diagram message and the message event both refer to the same
operation. When an event occurs in the system that can be unified with the first
message in an MSD, an active MSD is created. As further events occur that
can be unified with the subsequent messages in the diagram, the active MSD
progresses. This progress is represented by the cut, which marks for every lifeline
the locations of the messages that were unified with the message events. If the
cut reaches the end of an active MSD, the active MSD is terminated.

The semantics of the messages temperature and execution kind is as follows.
If the cut is in front of a message on its sending and receiving lifeline, the message
is enabled. If a hot message is enabled, the cut is also hot. Otherwise the cut is
cold. If an executed message is enabled, the cut is also executed. Otherwise the
cut is monitored. A violation of an MSD occurs if a message event occurs that
can be unified with a message in the MSD that is not currently enabled. If the
cut is hot, it is a safety violation; if the cut is cold, it is called a cold violation.
Safety violations must never happen, while cold violations are allowed to occur
and result in terminating the respective active MSD. If the cut is executed, this
means that the active MSD must progress and it is a liveness violation if it does
not. Instead, an active MSD is not required to progress in a monitored cut.

A (universal) MSD accepts an infinite sequence of message events in an object
system, also called a run of an object system, if it does not lead to a safety or
liveness violation of that MSD. An object system satisfies an MSD specification
(consisting of a set of universal MSDs), iff all possible runs of the object system
are accepted by all universal MSDs. We assume that at some point the specifi-
cation will be implemented by a software controller for the system objects. This
controller can be a single, centralized control program for all system objects, or
it can be a set of distributed controllers, e.g., one controller per system object.
We say that a controller for the system objects implements an MSD specification
if the closed system formed of the system controller with any possible environ-
ment are accepted by all universal MSDs in the specification. Additionally it is
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assumed that the system is always fast enough to take any finite number of steps
before the next environment event occurs [12]. Note that an MSD specification
can contain contradictions and then no implementation exists [9,2,7,8].

For more details on the MSD semantics, we refer to Harel and Maoz [10].
Note, however, that our interpretation of the message modalities differs slightly
from the original definition where hot messages also encode the liveness require-
ment (must eventually occur). In our interpretation, the execution kind defines
whether a message may or must eventually occur. Hot messages are typically
also executed and cold messages are monitored, but there are also cases where
hot monitored messages (may occur but must not be violated) or cold executed
ones (must eventually occur but may be violated) are used.

As an example for an MSD consider the MSD WorkerOrdersItem in Fig. 3. It
says that when a worker tells the assembly station to order an item of a particular
kind, the assembly station must send an order to the storage management. Then
the storage management can either reply that the item is not available; in that
case the assembly station must then forward this information to the worker.
Alternatively, the storage management can command the transport system to
create a job (for some robot) to pick up an item of the given kind a certain
location and deliver it to another location. When the message createJob is
sent, this activates a copy the MSD OrderRobotToStartJob which requires that
then a robot is ordered to do the job6.

This example MSD also introduces several advanced concepts. First, it is
possible that lifelines do not only represent one particular object, but they can
be symbolic and represent any object of a certain class [12, Chap. 7]. As events
occur between certain objects, lifelines can be bound dynamically to objects. The

6 Here the job sent to the robot is the one that the transport system control points to
via its createdJob link. We assume that this link points to the job that was created
last. However, how we model the creation of a job will be explained in Sect. 3, where
we also introduce a more elegant way of assigning the new job to the robot.



sending and receiving lifelines of the first message are bound during the unifica-
tion of the first message with a message event. The objects that the remaining
lifelines are bound to are specified by binding expressions that are attached to
the lifelines. In our case, these expressions are OCL expressions where lifelines
names can be used as variables. For more details we refer to Brenner et al. [3].
Note that there can be several active copies of the same MSD with different
lifeline bindings, or with the same lifeline bindings, but then with different cuts.

The second advanced concept is that messages can have parameters. A list
of parameters that a message has is defined by the operation of the message.
Parameters can have a primitive type, e.g. Boolean, integer, string, or they can
by typed by classes. A message event must carry values for each parameter that
the operation defines, which are thus concrete primitive values or, in the case
that the parameter is typed by a class, pointers to objects. A diagram message in
an MSD can specify values for message parameters, either by defining constant
values or by referring to lifeline names, or other variables.

For example, by referring to the lifeline a in the MSD WorkerOrdersItem, we
specify that the destination of the transport job should be the assembly station
where the worker placed the order initially. (See that the third parameter of the
operation TransportSystemControl.createJob(. . . ) is toLoc.)

An MSD can also contain further variables, called diagram variables, which
are only visible in the scope of an active MSD. They can be bound or unbound if
no value was yet assigned to them. In the MSD WorkerOrdersItem, for example,
the variable itemKind specifies the parameter value for the two orderItem mes-
sages. Initially, the variable is unbound and in that case the diagram message
can be unified with any orderItem message sent between a worker and an as-
sembly station, regardless which item kind object it carries as parameter value.
After unification, the variable itemKind is bound to the item kind object carried
by the unified message event. For the next orderItem message sent from the
assembly station to the storage management, the diagram variable itemKind is
bound and, in that case, the diagram message can only be unified to a message
event when the carried parameter value matches the specified value.

If a message event occurs that can be unified with the diagram message,
but only carries a parameter value that does not match the specified value,
this is a violation of the MSD (cold violation or safety violation, depending on
the cut temperature). In the MSD WorkerOrdersItem, this means that the item
kind transmitted to the storage management (msg. 2) and the item kind for the
creation of the job (msg. 3) must be the same item kind as originally sent by the
worker to the assembly station (msg. 1). For more details on message parameters
we refer to Harel and Marelly [12, Chap. 7] and Brenner et al. [3].

The third advanced concept is the alt-fragment, which allows us to specify
decisions or non-deterministic choices. Here there is a non-deterministic choice
whether to create a job or to reply that an item is not available. What this
decision depends on can be modeled in another MSD that, for example, checks
whether an item of that kind is available in a warehouse. We omit this for brevity.



An MSD specification can be executed by the play-out algorithm, which
provides an operational semantics to MSD/LSC specifications [12,15]. It roughly
works as follows: when an environment event occurs that activates or progresses
one or multiple MSDs into cuts where executed system messages are enabled,
then a system event is executed that can be unified with one of the enabled
executed system messages and does not lead to a safety violation.

We recently extended the play-out algorithm to execute not only MSD spec-
ification consisting of MSDs that describe what the system objects are required
to do, but we also support assumption MSDs that describe assumptions on what
the environment can, will or will not do. We can think of the set of assumption
MSDs, also called environment assumptions, as the dual to the requirements: a
system is expected to satisfy its requirements as long as the environment satisfies
the assumptions [8]. This extension of play-out is implemented in Scenario-
Tools [3]. We give an example of an assumption MSD in Sect. 3.

The ScenarioTools play-out supports messages that can have simple side-
effects on the objects in the object system. For example, by convention, if a class
defines an attribute a:〈Type〉 and an operation setA(a:〈Type〉) (with a parameter
of the same type), then message events referring to that operation will change
the attribute value of the receiving object according to the value carried by the
message event. This also works for single-valued references. Maoz et al. describe
an implementation of the play-out algorithm that supports the creation of ob-
jects [16]. Complex changes, for example, the creation of a job object as shown
in Fig. 2, with its links to other objects, are currently very difficult to express;
they require one message per creation of an object or link.

2.2 Graph Transformation Rules

Graph transformation rules (GTRs) [6] describe changes on a typed graph in a
declarative way. Since software models can be considered graphs, typed by their
meta-model, GTRs can be used to describe changes on models.

An existing graph, called host graph, is changed into a target graph using a
graph transformation rule, which consists of a left-hand and a right-hand side as
shown on the left of Fig. 4. They are marked with LHS and RHS, respectively.
The figure shows the GTR arrived that describes the movement of an agent from
one location oldLoc to another location newLoc.

agent:Agent

newloc:Location

isAt
oldLoc:Location

GT arrived(newLoc:Location)

LHS RHS

agent:Agent

newloc:Location

oldLoc:Location

isAt
GT arrived(newLoc:Location)

agent:Agent

newloc:Location

isAt
oldLoc:Location

isAt

--

++

short-hand notation:

Fig. 4. Two representations of a GTR for an agent arriving at a new location



The left-hand side defines a pattern for which a match, an isomorph subgraph,
needs to exist in the host graph in order to apply the rule. The right-hand side
defines the replacement to be performed on the host graph that changes it into
the target graph. Hence, the two sides of the rules can be interpreted as follows:
(1) nodes and edges occurring on the left-hand and right-hand side are kept in
the host graph, (2) nodes and edges occurring on the left-hand but not the right-
hand side are removed from the host graph, and (3) nodes and edges occurring
only on the right-hand side are added to the host graph.

In our example, the left hand side requires the agent to be at a location.
The right-hand side defines that the agent must be at another location after the
transformation.

We use a short-hand notation for GTRs as shown on the right of Fig. 4.
Elements marked red and with “−−” belong to the right-hand side, element
marked green and with “++” belong to the left-hand side. Unmarked elements
belong to both sides.

There exists a range of tools that support the modeling and execution of
graph transformations. They often add concepts like positive and negative con-
ditions. Positive conditions are additional conditions that must hold in order to
apply the rule. Conversely, negative conditions, also called negative application
conditions (NACs), must not hold in order to apply the rule. Conditions can be
specified using additional graph patterns or expressions, for example in OCL.

ModGraph [20] is a tool for model-driven software engineering with GTRs.
It is based on and built for the Eclipse Modeling Framework (EMF) [18]. The
vision of ModGraph is to provide a model-driven software engineering tool
that combines the advantages of EMF, Xcore7 and ModGraph’s GTRs. EMF,
with its meta-modeling language Ecore, supports the modeling of object-oriented
structures. Xcore is a textual language for Ecore, extended with the program-
ming language Xbase. On top, ModGraph’s GTRs provide a higher level of
abstraction for operations that involve complex matching and transformation.

A ModGraph GTR implements an operation defined in an Ecore or Xcore
class model. A rule comprises a rule pattern in short-hand notation (as shown
in Fig. 4) and, optionally, textual pre- and post-conditions and graphical NACs.
If the operation is called on an object, the rule, if applicable, will be applied. If
the rule is not applicable, an exception is thrown.

A graph pattern can consist of several kinds of nodes. First, there is a special
node, called the current node, which is named this. This node represents the
object on which the operation is called. When the operation is called on an
object, this node is bound to the called object, which means that, in order to
apply the rule, a match of the LHS-pattern must be found in the model where
the this-node maps to the called object.

Also other nodes in the rule can have a pre-defined binding. If a node’s name
equals the name of an accordingly typed parameter of the operation, these nodes,
when the operation is called, will be bound to the objects that are provided as
parameter values by the call. Again the match for the rule’s LHS must respect

7 http://wiki.eclipse.org/Xcore

http://wiki.eclipse.org/Xcore
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these pre-defined node bindings. Parameter names can also be used in conditions
and nodes with pre-defined bindings can also appear in graphical NACs.

All other nodes are unbound and can be mapped to any object in a match.

Figure 5 shows a modified version of the GTR arrived. We suppose that ar-
rived(. . . ) is an operation of the class Agent. The agent node is now the this-node.
The node newLoc has a pre-defined binding due to the operation’s corresponding
newLoc-parameter. The node oldLoc is unbound and will be bound to whatever
location the agent is at the time the operation is called. The figure also shows
a NAC that says that the rule can only be applied when there is currently no
(other) agent at the new location. This expresses that, in our factory example,
only one robot may be at a warehouse or assembly station at a time; we can
think of each location having only one loading/unloading apparatus.

Technically, for execution, ModGraph GTRs are transformed into Java code
or Xcore operations. The transformation to Xcore enables the indirect interpre-
tation of the GTRs [20].

3 Integration of MSDs and GTRs

The basic idea of our integration of MSDs and GTRs is straightforward. As be-
fore, we use GTRs to describe implementations of operations. As message events
occur during a system run, GTRs are executed as side-effects. More specifically,
for each message event referring to an operation that is implemented by a GTR,
that GTR is executed. The execution is synchronous, which means that the next
message event occurs only after the execution of the GTR is completed.

In addition, GTRs can also constrain the allowed sequences of events: We
define that, if the precondition for applying a GTR is not satisfied, that is, there
is no match for the LHS, a positive precondition is not satisfied, or there is a
match for a NAC, then this implies that the corresponding event must not occur.
In other words, an occurrence of an event that demands the execution of an
inexecutable GTR leads to a safety violation. If the event is a message sent by a
system object, then it is a safety violation of the requirements; if it is a message
sent by an environment event, it is a safety violation of the assumptions.

In the following, we illustrate the integration by two examples:

As a first example, consider the two GTRs that implement the operations
TransportSystemControl.createJob(. . . ) and Agent.doJob(job:Job) shown in Fig. 6.
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Fig. 6. GTRs for creating a job and assigning it to an agent with a more elegant version
of MSD OrderRobotToStartJob

While the second could be modeled equally with a message referring to an opera-
tion Agent.setAssignedTo(job:Job) (see the convention for set-messages explained
in Sect. 2.1), the structural change intended by TransportSystemControl.create-
Job(. . . ) is much more elaborate and the GTR provides a concise, visual way for
modeling the creation of a job object and the setting of the all the links.

Furthermore, the LHS of the rule also contains an item node. This node will
not be connected to the job via any link—its only purpose is to constrain the
application of the rule in such a way that the rule will be applied only if at least
one item of the specified kind is at the the specified pick-up location. If this is
not the case, sending the respective message event would be a safety violation
of the requirements.

We furthermore extend the integration so that now an operation’s return
value can be assigned to a MSD diagram variable. We extend the example so
that now the operation TransportSystemControl.createJob(. . . ) returns the newly
created job. In the MSDs, we then use the return value. In the new version
of the MSD OrderRobotToStartJob as shown on the right of Fig. 6, we use the
reference to the newly created job to more easily model that the newly created
job must be assigned to a robot (cf. Fig. 3). This way, we no longer require the
association TransportSystemControl.createdJob to point to the newly created job
(see the class diagram in Fig. 2).

Figure 7 shows the MSD RobotMoveToPickUpLocation. It specifies that the
Robot, after being ordered to perform the job, must move to the pick-up location
as indicated by the job (Job.fromLoc). This is modeled as a message to the
environment, which abstracts from the robot’s software controller ordering it’s
drives to physically move to the location. The arrival is modeled as a message
from the environment to the robot, which abstracts from the robot’s sensors
telling the robot that it arrived at the desired location.

Upon arrival at that location, which is a warehouse that will be bound to
the w:Warehouse lifeline, the robot must order the warehouse to load an item of
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Fig. 7. MSD for a robot to execute a job

the kind specified by the job onto the robot. Again, we abstract by a message to
the environment that the warehouse’s software orders some physical/mechanical
loading mechanism (maybe even a human worker) to load an item onto the robot.
Also, the effective loading of the item onto the robot, which will be recognized by
a sensor of the robot, is again modeled as a message from the environment to the
robot. After the item is loaded, the robot moves to the destination as specified
by the job (Job.toLoc). The unloading of the item is modeled in another MSD
that we omit here for brevity.

There are two aspects about the process modeled in the MSD RobotMove-
ToPickUpLocation that are not expressed in this diagram.

The first missing aspect is that arriving at a certain location is a spatial
change of the robot in the factory. It should be accompanied with a structural
change in the object system. We model this with the GTR arrived that we al-
ready discussed previously (see Fig. 5). Note that, due to the NAC, this rule
is only applicable if no other agent is currently at the target location. Since
arrived(...) is an environment message (sent by an environment object), an
occurrence of that message in this case would lead to a safety violation of the
environment assumptions. It means that we assume that this will never happen.

Extending the play-out algorithm to consider the safety properties implied by
GTRs is conceptually quite simple: The play-out algorithm selects only events
for execution that do not lead to safety violations in any MSDs. Now, addi-
tionally, we only need to check that events selected for execution do not violate
an application precondition of a corresponding GTR. The technical dimension
for realizing this in our tool environment is a little more involved, as will be
explained in Sect. 4.



Second, the diagram RobotMoveToPickUpLocation does not model that we
assume that when a robot moves to a location, it will eventually arrive there.
That is, when the third message in RobotMoveToPickUpLocation is enabled, the
environment could also decide that the robot arrives at a different location,
which would lead to a cold violation of the diagram. Also, it may never arrive
anywhere, i.e., the environment will not send any arrived(...) message. In
both cases, the MSD RobotMoveToPickUpLocation will not progress.

To express that we assume that the robot will also arrive at the location
that it moves to, we need the assumption MSD RobotWillArrive as shown on the
bottom left of Fig. 7. It models that if a robot starts moving to a certain location,
it will eventually arrive at that location. The forbidden message says that if
the robot decides to move to another location before arriving at the previously
indicated location, we do not assume that it will arrive at the previously indicated
location. The idea behind the assumption MSD ItemWillBeLoaded is very similar.

4 Integrating ScenarioTools and ModGraph

In the following, we describe how we implement the integration of MSDs and
GTRs by integrating the tools ModGraph and ScenarioTools.

The interaction between both tools is shown in Fig. 8. In ScenarioTools
MSD specifications are modeled in UML, using the Papyrus editor (see step 1
in Fig. 8). UML is extended with a profile to add modalities to sequence dia-
gram messages, for example. The UML class model is then transformed into an
Ecore class model (step 2), from which an object system can be instantiated
(step 5). Based on the object system, ScenarioTools can interpret the MSDs
and perform play-out (step 6) [3].

When integrating ModGraph with ScenarioTools, before performing
play-out, we model GTRs and compile them into an executable Xcore model.
The basis for modeling GTRs with ModGraph is the Ecore model created in
step 2. The behavior of the operations in the Ecore class model can be specified
by GTRs (step 3). These GTRs are then compiled into an Xcore model (step 4).
The Xcore implementation of the GTRs can now be called by ScenarioTools
when corresponding message events are executed during play-out.

In the Xcore model, for each GTR, two Xcore operations are generated,
a check-operation and a do-operation. The check-operation is used to check the
precondition for the applicability of the rule; the do-operation executes the trans-
formation. When the ScenarioTools play-out selects possible messages events
for execution, it first calls the check-operation. Only if this message returns
a valid match of the precondition, play-out may choose to safely execute the
corresponding message event. Otherwise, as described in Sect. 3 executing the
message leads to a safety violation.

One limitation of our tool integration is that currently ScenarioTools only
supports messages with one parameter. We plan to extend ScenarioTools so
that multiple parameters will be supported. For realizing our example with the
current limitation, we use multiple messages to transmit each parameter individ-
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Fig. 8. Overview of the ScenarioTools-ModGraph-integration

ually. This complicates the current example implementation, but conceptually,
the tool integration demonstrates a successful integration of the two modeling
paradigms.

5 Related Work

While there is extensive work on scenario-based specification and analysis
approaches based on LSCs/MSDs or other kinds of sequence diagrams, e.g.
STAIRS [14], to the best of our knowledge, none of the them rigorously supports
the reconfiguration of the participating objects or components at run-time.

Thus, we will in the following discuss two different approaches that combine
models for structural reconfiguration behavior and message-based interaction
behavior.

The MechatronicUML [1] is a design method for self-adaptive mechatronic
systems. This method consists of a family of languages for modeling real-time
behavior and architectural reconfiguration [17]. The behavior of the components
is specified using state machines with real-time annotations. The architectural
reconfiguration is specified using graph transformations on the component struc-
ture. Similar to our approach, the execution of graph transformation changes the
structure of the active components and their behavior. However, in Mechatron-
icUML, the message based interaction is defined by intra-component state ma-
chines and not inter-component scenario models. For the early design of complex
interaction behavior, the latter are much more intuitive.

Diethelm et al. [5] take a complementary approach for the combination of
scenarios and graph transformation. They use a set of simple graph transfor-



mation scenarios as input and synthesize a state machine which contains the
graph transformations in the states. The basic idea is that all similar graph
transformations are mapped to a common state in the state machine. An ad-
ditional difference to our approach is that they do not consider that the graph
transformations can change the object structure, which in turn would affect the
execution of the scenarios as in our approach.

6 Conclusion and Future Work

In many software-intensive systems, there is a tight interdependency between the
message-based interaction of its components and the structural dynamics of the
system. In order to intuitively, yet precisely design such systems, we presented an
approach that integrates scenario-based specifications using MSDs with graph
transformation. MSDs support an incremental refinement and extension of the
message-based interaction behavior and GTRs offer easy to understand, declara-
tive, pattern-oriented means for expressing structural change. The integration of
the two formalisms works in two ways: structural transformations are executed
as side effects of messages, but GTRs can also constrain when certain actions
can be performed.

One interesting direction of future research is how to systematically and
efficiently analyze the resulting specification for realizability. Simulation via play-
out is of course a first method to search for contradictions, but one can hardly be
sure to simulate all possible sequences of events in all structural configurations.
We are working on an extension of the ScenarioTools realizability-checking
capabilities [7] to be able to explore different object system reconfigurations.
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