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ABSTRACT

Software-intensive systems often consist of multiple compo-
nents that interact to realize complex requirements. An ad-
ditional dimension of complexity arises when one designs
many variants of a system at once, that is, a software prod-
uct line (SPL). We propose a scenario-based approach to
design SPLs, based on a combination of Modal Sequence
Diagrams (MSDs) and a feature model. It consists in asso-
ciating every MSD to the set of variants that have to satisfy
its specification. Variability constitutes a new source of com-
plexity, which can lead to inconsistencies in the specification
of one or multiple variants. It is therefore crucial to detect
these inconsistencies, and to produce a controller for each
variant that makes it behave so that it satisfies its specifica-
tion. We present a new controller synthesis technique that
checks the absence of inconsistencies in all variants at once,
thereby more radically exploiting the similarities between
them. Our method first translates the MSD specification
into a variability-aware Biichi game, and then solves this
game for all variants in a single execution. We implemented
the approach in ScenarioTools, a software tool which we use
to evaluate our algorithms against competing methods.

1. INTRODUCTION

Many software-intensive systems in manufacturing, trans-
portation, or healthcare, consist of multiple components that
provide increasingly complex functionalities. Single require-
ments are often realized by the interaction of several com-
ponents and, due to concurrent environment events or user
inputs, single components must often fulfil several require-
ments at the same time. In many domains, engineers build
several variants (also called products) of the same system
— a Software Product Line (SPL) — in order to satisfy cus-
tomers’ specific needs while maximizing reuse, and thereby
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reducing development costs and time to market. The dif-
ferences between the variants (i.e. the variability) are com-
monly expressed in terms of features, i.e. functionalities that
may or may not be present in a given variant. A Feature
Model (FM) [24] is then built to specify which combinations
of features are valid in regard to technical or economical con-
straints. As more features are added to the SPL, the number
of possible variants grows exponentially in the worst case.

Designing a consistent specification for a single software
is already a challenging task, but it becomes drastically
harder when it comes to SPLs. If inconsistencies remain
undetected, they could spread across many products, and a
late detection can lead to costly iterations in the develop-
ment cycle to repair them. Therefore, there is a need for
techniques that allow engineers to specify all the products
they (know they) have to build, detect inconsistencies within
their specifications, and derive a controller describing how
each product should be implemented.

In this paper, we propose a Scenario-Based Product Line
Specification (SBPLS) framework that allows engineers to
formally specify interactions in product lines of open reac-
tive systems. The framework combines an FM with Modal
Sequence Diagrams (MSDs), i.e. sequence diagrams with
modalities defining scenarios that the system may or must
(not) satisfy [19]. Scenario-based modeling approaches are a
natural way for engineers to reason about inter-component
behavior during early design. Additionally, MSDs can spec-
ify assumptions on what uncontrollable events may or must
(not) happen in the environment of certain products [14, 5].
The association with an FM permits to specify functional-
ities implemented by a single feature [15], or even feature
interactions that should or should not happen. The latter
was not possible in previous SPL specification methods [16,
15]. A product’s specification is inconsistent (or unrealiz-
able) iff there exists a sequence of uncontrollable events that
inevitably leads to a situation where the system is forced to
violate a safety or liveness requirement.

In the past, we explored two approaches for checking the
realizability of an SBPLS. The first transformed the consis-
tency checking into a product-line model-checking problem,
and used a dedicated model checker to verify all product
specifications at once [16]. This approach, however, was
incomplete in that it did not differentiate between (control-
lable) actions of the system, an (uncontrollable) actions of



its environment; due to that, it could yield false positives.

Instead, a game-based approach [25] is needed. The game
is played by the system against its environment, the former
alming to satisfy requirements and the latter trying to vi-
olate them. The specification is realizable iff there exists a
strategy for the system to always satisfy the requirements
regardless of what happens in the environment, provided
that the latter respects the assumptions. The strategy can
be seen as a controller for the system that implements the
specification. Discovering a strategy is thus equivalent to
synthesizing a controller for the system.

Our second method consisted in using game-solving al-
gorithms to synthesize controllers for all products one at a
time [15]. Our algorithms were on the fly (i.e. they could
achieve the synthesis without exploring every execution of
the game) and incremental (i.e. they could synthesize a con-
troller for a product more rapidly on the basis of a controller
for the previously synthesized product). Although the incre-
mentality already allows the algorithms to partially exploit
commonalities between variants, its efficiency depends on
the order in which products are synthesized [15].

In this work, we present a novel game-based approach
that attempts to synthesize controllers for all products of an
SPL at once. The main difference with the previous work
is that this new method considers all variants at the same
time, thereby exploiting more radically the similarities be-
tween the products. However, this is achieved at the cost of
keeping track of the variability between products during the
synthesis. Another difference is that this method does not
use on-the-fly game-solving exploration. The starting point
of our method is the formal definition of SBPLS. Therein,
MSDs are associated to a formula encoding the sets of prod-
ucts for which they are part of the specification. Then, we
transform such a specification into a featured game graph
whose structure can be modified depending on the features
of a considered product. Finally, we propose algorithms that
can, from this game graph, determine the consistency of the
specification of all products and derive a controller for the
consistent ones in a single synthesis run. It makes use of
the variability information contained in the game graph to
avoid redundant work during the synthesis of the products.

We carried out experiments to evaluate the performance
of our new algorithm with respect to (1) a method that
synthesizes all the products separately and successively, and
(2) our previous on-the-fly, incremental algorithms. The re-
sults show that our new algorithm always outperforms the
product-by-product method. It can also compete with our
previous algorithm, as it sometimes performs better than the
latter depending on the case. This indicates that the new
approach we propose is viable per se, but could be com-
plemented with on-the-fly exploration heuristics to further
extend their efficiency.

Structure. We introduce the foundations in Sect.2. We
define SBPLS in Section 3, and introduce the game structure
that models the realizabilty-checking problem for an SBPLS
in Sect.4. Section 5 presents the synthesis algorithms. Im-
plementation and evaluation are discussed in Sect.6. Last,
we discuss related work in Sect. 7.

2. FOUNDATIONS

In the following, we introduce the foundations of Feature
Models (FMs) and Modal Sequence Diagrams (MSDs).

2.1 Feature Models

Feature Models (FM) are commonly used to specify the
variability between the products of an SPL. Basically, a FM
is a tree where nodes are features and edges specify how
features are decomposed into child features. Each parent-
child relationship has a type which constrain the valid sets
of features that can be found in products. The usual de-
composition types are AND, OR, and XOR, and define that
when a parent feature is included, all, at least one, or ex-
actly one, child feature must be included, respectively. One
can also add cross-tree constraints to specify additional de-
pendencies between features. These are Boolean formulae

@ € 22" over the set of features. The semantics of an FM
fm, noted [fm], is commonly defined as the sets of products
that satisfy the decomposition hierarchy and the additional
constraints [27].

Figure 1 shows the FM of a tea vending machine exam-
ple. The root feature VendingM achine is mandatory. It has
two child features, i.e. an optional feature Cup (which mod-
els the capability to provide plastic cups) and a mandatory
feature Tea. The latter has three additional child features,
such that Sugar is optional whereas Water and TeaBag are
mandatory. Finally, TeaBag has two child features (Green
and Lemon) sharing an OR relationship, meaning that at
least one of them must be present in a product. Altogether,
this FM defines twelve valid product variants.

Legend:

JTcand geor exor 4=0mt

VendingMachine

Sugar TeaBag Water

’ Green ‘ ’ Lemon

Figure 1: The feature model of the tea vending machine

2.2 Modal Sequence Diagrams

Leaning on Live Sequence Charts [12, 20], Harel and Maoz
proposed Modal Sequence Diagrams (MSDs) as a formal in-
terpretation of UML sequence diagrams [19]. MSDs spec-
ify the message-based communication behavior of a set of
objects, which we call object system. We consider open sys-
tems where the object system is partitioned into controllable
system objects and uncontrollable environment objects. We
only consider synchronous messages, where the sending and
receiving of a message together form a single event. Mes-
sages sent from system objects are called controllable events
(or system events); those sent from environment objects are
called uncontrollable events (or environment events). Then
a run of the system is a sequence of controllable events and
uncontrollable events.

An MSD specification consists of a set of MSDs. We con-
sider that all MSDs are universal, that is, they specify prop-
erties that all runs of the system must satisfy. where MSDs
can not only specify requirements on how the system ob-
jects must react to the environment, but also assumptions
on what may, will, or will not happen in the environment.



Figure 2 shows the MSD specification of a tea vending
machine. In addition to MSDs, we use a composite struc-
ture diagram (CSD) to specify the structure of the object
system. Our example consists of the vending machine m, its
dispensing unit d, and a user u. System objects (e.g. m)
have a rectangular shape; environment objects (e.g. u) have
a cloud-like shape. The objects are instances of classes that
we model in a class diagram (CD) shown on the top left of
Figure 2.

An MSD contains lifelines and messages. Messages have a
temperature (hot or cold) and an ezecution kind (monitored
or executed). In Figure2, the temperature and execution
kind of messages are notated by labels (c,m), (ce), (h,m),
(h,e). The arrows of hot messages are colored red; those of
cold messages are blue. Monitored messages are modeled by
a dashed arrow; executed ones by a solid arrow.
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Figure 2: The MSD specification of the tea vending machine

We now detail how temperature and execution kind are
used to encode safety resp. liveness properties. When an
event corresponding to the first message of an MSD occurs,
the MSD becomes active. The active MSD progresses as fur-
ther events that correspond to subsequent messages occur.
This progress is represented by the cut, which marks mes-
sages in the MSD corresponding to events that occurred.
In Figure 2, a dashed horizontal line illustrates the cut of
several MSDs that were activated by an occurrence of the
pay event, sent by the user u to the vending machine m.
A message in an active MSD is enabled when the cut is
immediately in front of the message. If a hot message is
enabled, the cut is also hot; otherwise it is cold. If the mes-
sage is executed, the cut is also executed; otherwise it is
monitored. An active MSD is wviolated when an event oc-
curs and corresponds to a message in the MSD that is not
currently enabled. If the cut is hot, this is called a safety vi-

olation; which must absolutely be avoided. If the cut is cold,
the violation is cold; meaning that it is allowed to happen
and results in a premature termination of the active MSD.
Events corresponding to no message in the active MSD do
not affect it. If the cut is executed, then it must eventually
progress; otherwise there is a liveness violation of the MSD.
If a cut is monitored, the active MSD is allowed to remain
in this cut forever. An active MSD terminates when the cut
reaches the end of the MSD, which becomes inactive again.

One MSD specification is generally composed of a set of
MSDs progressing in parallel. Their current cuts altogether
determine which events may or must occur next, that is,
according to the enabled messages and their characteristics.
This can lead to situations where events strictly required to
happen in one MSD is strictly forbidden by another MSD.
Harel and Marelly formalised the play-out semantics [21]. It
specifies that the system and the environment send messages
that can activate MSDs or change the current cut of active
MSDs, such that (1) the environment can send arbitrary
messages, (2) the system can send an infinite number of
messages between two successive environment messages, and
(3) if there are enabled executed message in any active MSD,
the system will send the corresponding messages. These
three conditions imply that a new environment message is
sent only when either all active MSDs are terminated or all
enabled messages are monitored.

A consistent run of the play-out semantics is a run that
results in neither a safety violation nor a liveness violation
of the specification. Then an MSD specification is consistent
iff, given any sequence of environment events, there exists a
valid play-out execution of the MSD specification — that is,
the system can find a sequence of system events that leads
to a consistent run. We define a system (resp. environment)
strategy as a mapping from the system (resp. environment)
states to the events chosen in these states. Accordingly, we
define the synthesis problem as the problem of finding a sys-
tem strategy that leads to a consistent run regardless of the
environment strategy. We also name controller a strategy
yielded by the synthesis process, as it actually restricts the
behavior of the system so that it satisfies the specification.
The synthesis problem thus requires to determine if an MSD
specification is consistent and, in this case, to return a con-
troller for the system.

3. SCENARIO-BASED SPL SPECIFICATIONS

Since SPLs commonly capture the variability between their
products by using features, we propose to combine the above
specification formalism with FMs.

Definition 3.1 (Scenario-Based Product-Line Spec.)
Let M be a set of MSDs and fm be an FM over a set F

of features. A, SBPLS is a total function msdf : M — 92"
that associates every MSD with a Boolean formula encoding
the products in which the MSD is executed. The MSD spec-
ification of a product p is the subset of M whose associated
formula is satisfied by the product, that is, a set M’ C M
such that m € M' & p = msdf (m).

Within our SBPLS framework, the specification of a given
product comes down to a simple union of all the MSDs that
correspond to this product. To synthesize a controller for
each product, we can thus apply state-of-the-art synthesis



algorithms on every individual product specification. How-
ever, this product-by-product method does not take into ac-
count that two products can share commonalities in their
specification, viz. the MSDs that are part of both specifica-
tions. As an alternative, we propose to extend the synthesis
algorithms with new heuristics able to exploit commonality
to reduce synthesis time. As we will see, instead of a set of
controllers our extension returns only one controller anno-
tated with variability information, such that from this con-
troller, we can either derive a controller for a product whose
MSD specification is consistent, or perform additional anal-
yses on the featured controller. As for the other products,
the synthesis algorithm will detect them as unrealizable.

A particular form of SBPLS consists in associating ev-
ery MSD with a single feature [16, 15]. In this case, the
specification is compositional, that is, features are specified
independently from each other. A limitation of this form is
that one cannot represent the combined behaviour of fea-
tures, e.g. to solve feature interactions. This is why we
extended the specification language with the capability to
associate MSDs to formulae instead of single features.

Figure 2 is an SBPLS of a vending machine SPL. Each
MSD is associated to a Boolean formula shown in the top-
right of the MSD. In this example, the formulae consist of
only one feature; an MSD is thus part of the specification of a
given product iff the feature occurring in the associated for-
mula is enabled in the products. This small example already
illustrates the complexity of understanding the specification
related to multiple products at once. The algorithms and
tools we present in the next sections allow engineers to have
confidence in their specification and observe its effects on
every variant of the future system.

4. FEATURED GAME GRAPH

The synthesis process can be regarded as a game between
the system and its environment. The actions they can ex-
ecute at a given point of time are their respective enabled
messages. The winning condition for the system is that it
must reach infinitely often a state where no MSD is in an
executed cut (henceforth called an accepting state) while
avoiding safety violations (represented as a failure state).
We formalise controller synthesis from an MSD specification
via the definition of Biichi game [18].

Definition 4.1 (Biichi Game)

A Biichi Game (BG) is a tuple bg = (Q, %, dc,, du, qo, A, B)
where (@ is a set of states; ¥ is the alphabet; §. C Q X X X Q,
is the set of controllable transitions; §,, C Q X 3 X @, is the
set of uncontrollable transitions, with 6. N, = 0 and

VQ * El(q, g, t) € 50 <~ %(q7 a-lvt/) € 6“

that is, the transitions leaving a given state are all either
controllable or uncontrollable; qo € @ is the initial state;
A C Q is the set of accepting states; B C @ is the set of
failure states, with AN B = () and

Vb€ B e (byo,q) €0.Udy = q=0b.

The semantics of a BG is its set of infinite executions, that
is,

[bg] = {q0, 00,91, -+ € (Q x £)*
| Vi <0 e (qi,00,Gi+1) € 6c Udu}.
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Figure 3: An SBPLS transformed into an FBG.

We now give an intuition of how a set of MSDs can be trans-
formed into a BG. The state space @ is defined as the carte-
sian products of the set of cuts of all the MSDs plus one
self-looping failure state, which represents the occurrence
of a safety violation. The initial state is the state where
all MSDs are inactive. The transitions between states are
determined according to the enabled messages. If at least
one system message is enabled, the transitions leaving the
current state are all controllable and correspond to the send-
ing of an system message. If sending a message results in
a safety violation, the corresponding transition targets the
failure state. Otherwise, it leads to the state where the
MSDs where the message is enabled have advanced to their
next cut, while the other MSDs have not moved. If only
environment messages are enabled, the outgoing transitions
of the current state are uncontrollable. The state reached by
such a transition is determined according to the same rules
as in the controllable case.

Figure 3 illustrates the FBG formalism. Figure 3a shows
the specification of an SPL with two products; Figure 3b
shows the corresponding FBG, and Figure 3c depicts the
two equivalent projections. We see that the first transition
in the FBG, due to feature A and thus common to the two
products, is annotated with the formula A. After executing
the transition, the FBG reaches a state with two outgoing,
exclusive transitions: one labelled with BA—C' and the other
with =B A C, each of which available to a different product.

To leverage these concepts to SPLs, we first have to extend
BG with the capability to express that some MSDs must
not be considered for a given product. More precisely, we
define that in our new formalism, transitions are associated



to constraints over the set of features, thereby restricting
the products able to execute them.

Definition 4.2 (Featured Biichi Game)

A Featured Biichi Game (BG) is a tuple fbg = (Q, %, dc,,
Ou, qo, A, B, fm, ) where Q, X, d.,, du, qo, A, and B
are defined as in Definition 4.1, fm is an FM over a set of
features F, and v : (6. Ud,) — 2" js a total function that
associates transitions with a Boolean formula over F. For a
transition t and a product p, v(t) is the formula such that
p = (%) if and only if p can execute t.

An FBG is equivalent to a set of BGs, i.e. one per valid
product. The BG corresponding to a product p is obtained
by computing the so-called projection of the FBG onto p.

Definition 4.3 (Projection of FBG)

Let fbg = (Q, %, dc,, 6u, qo, A, B, fm, v) be an FBG, an
p € [fm] be a product. The projection of fbg onto p is the
BG fbg |, = (@, %, 6c,, 6., qo, A, B) where

; = {(q7 g, ql) € 55 |p ': ’Y(q7 g, ql)}
61/1 = {(q707 q/) € 5“ |p ): 7(q7o'7 q/)}

The semantics of an FBG is defined as a function that asso-
ciates a valid product of fm to its respective projection.

=

Definition 4.4 (FBG Semantics)
Let fbg be an FBG over an FM fm. The semantics of fbg

is a total function [fbg] : [fm] — 2(@*®" such that
Vp € [fm] « [fbgl(p) = [fbgp].

Now that the formal model is defined, we explain how to
transform an SBPLS into an FBG. The states of the automa-
ton result from the BG transformation defined above applied
to the union of the sets of MSD associated to the features.
The idea is that all these MSDs are part of the specifica-
tion regardless of the considered product, and that features
restrict the activation of their associated MSDs. The occur-
rence of a message that triggers no MSD activation results
in a single transition in the FBG, which is executable by all
products. When some MSDs should be activated (named
candidate MSDs), multiple transitions are created, namely
one per subset of the set of formulae associated to these
MSDs. Formally, let M be the set of newly activated MSDs.
Then for each M’ C M a transition ¢ is created, targets the
state corresponding to the activation of the MSDs in M’,
and such that ~y(t) is defined as

~y(t) = /\ msdf(m’) A /\

m’ €M’ meM\ M’

—msdf (m)

where msdf is the SBPLS. Intuitively, v(t) is the conjunction
of all the formulae associated to activated MSDs with the
negation of all the formulae associated to a candidate MSD
that has not been activated. Accordingly, a given product
is able to execute only one of these transitions, i.e. the one
corresponding to the set of activated MSDs that are part
of this product’s specification. Once the FBG is built, it
acts as the input to our synthesis algorithms with the aim
to derive a controller for each product.

Figure 4 shows an excerpt of the BG corresponding to the
SBPLS shown in Figure 2. The excerpt starts after the oc-
currence of cupPlaced in ServeTea. All the other MSD are

State Active MSDs
ServeTea
ServeTea 0
PourWater, PutTeaPowder
PutTeaPowder 1 cupPlaced()/<True>
PourWater

PutSugar, PourWater, PutTeaPowder
PutSugar, PutTeaPowder
PutSugar

PutSugar, PourWater

boilWater()/<S A WA TP>

boilWater()/<!S A WA TP>

©® N O A w N = o

utSugar()/<True> putTeaPowder()/<True> _pourWater()/<True>

2 6

putTeaPowder()/<True> pourWater()/<True> putSugar()/<True>  putTeaPowder()/<True>

8

putSugar()/<True>  pourWater()/<True>

4 7

pourWater()/<True> 3
putSugar()/<True>
putTeaPowder()/<True>

Figure 4: An excerpt of the FBG modeling the tea vending
machine SPL.

inactive. Then m sends boilWater to d (see the transition
from state 0 to state 1), which can trigger the activation of
PutSugar, PourSugar, and PutTeaPower depending on which
features are enabled. The transition from state 1 to state 2
illustrates the case where feature Sugar is disabled, hence
the formula =SAW AT P next to the transition. Accordingly,
only PourWater and PutTeaPowder are active in state 2. On
the contrary, the transition from state 1 to state 5 models
the activation of the three MSDs, and is thus labelled with
the formula SA X ATP. The other cases have not to be con-
sidered, since they correspond to products invalid according
to the FM shown in Figure 1.

S. SYNTHESIS ALGORITHM

Now that we have defined FBG and shown how to con-
struct it from an SBPLS, we focus on the synthesis algo-
rithms. We begin by presenting the single-system synthesis
algorithms that we then extend to support variability.

5.1 Single-System Synthesis

Cassez et al. [7] proposed an algorithm to synthesize a
discrete controller from a timed reachability game, itself be-
ing an extension of [25]. As we do not consider real time,
our starting point is an untimed variant of this algorithm.
The objective for the system is to fulfil the so-called winning
condition, that is, to visit an accepting state infinitely often
(which is equivalent to avoiding liveness violations) while
avoiding the absorbing failure state. To check this condi-
tion, the algorithm computes the set of winning states, i.e.
the states from which the system can guarantee to reach
an accepting state infinitely often. We name goal states any
state that is both accepting and winning. Thus, an arbitrary
state is winning if and only if it can reach a goal state.

Algorithm 1 shows how to compute the winning states.
Initially, the set G of goal states is the set of accepting states
(Line 1). A first step, encapsulated in function ReachGoal,
consists in computing the set Win of all states from which
the system can guarantee to reach a goal state (Line 2).
Then at each iteration (Lines 3-5), we remove from G all
goal states that cannot reach some goal state, i.e. that are



Input: bg = (Q, X, dc,, du, qo, A, B).
Output: Win, the set of winning states.

G+ A;
Win < ReachGoal(bg, G);
while G # G N Win do

G+ GNWin;

Win < ReachGoal(bg, G);
end
return Win

Algorithm 1: Synthesis(bg)

N0 R W N R

not in Win. We iterate until no more state is removed from
G; in this case, from any goal state in G the system can
guarantee to reach a goal state (possibly the starting goal
state itself), and thus to visit a goal state infinitely often.
At that point, the set Win contains only all the states that
can reach a goal state. If go € Win then the specification
is consistent as it means that the system can satisfy the
winning condition from it. Then, a controller for the system
can be obtained by pruning the non-winning states from the
BG.

The ReachGoal function differs from a standard reacha-
bility procedure in that it must distinguish between control-
lable and uncontrollable transitions. If the outgoing tran-
sitions are controllable, the system can select which one to
execute. Therefore, a state ¢ is winning if and only if it
has at least one controllable transition leading to a winning
state or a goal state, that is,

geWine \/ (¢ €WinuG).
(g,0,9")€dc

In the uncontrollable case, however, all the outgoing transi-
tions must lead to a winning state or a goal state since the
system has no control over their execution:

qeWin & /\

(9,0,9")€Edu

5.2 All-At-Once Synthesis

In [15] we proposed a method that enumerates all variant
products from the input FM and then synthesises them one
at a time. Our objective is to consider the set of all prod-
ucts at once. To that aim, we turn the above algorithms
into wvariability aware extensions and revisit the concepts
introduced in the previous section accordingly. The most
important definition, which determines whether the speci-
fication is consistent, is the winning condition: a state is
winning if and only if from this state the system can guar-
antee to reach an accepting state infinitely often. In FBG,
variability impacts the executability of transitions, and thus
the reachability between states. Therefore, a state can be
winning for only a subset of the valid products, and the set
of winning states Win is replaced by a function from @ to

(¢ € WinUG).

92" that associates a given state to a formula encoding the
products for which the state is winning. The definition of
goal states is modified similarly, since a goal state is an ac-
cepting state that is also winning. For recall, Algorithm 1
determines the set of goal states through a greatest fixed-
point computation, starting with the set of accepting states
and potentially removing states from the G set at each iter-
ation. In our extension (see Algorithm ?7?), we define G as

F
a function from A to 22 that associates to each accepting

Input: fbg = (Q, X, dc,, 0u, qo, A, B, fm, ).
Output: Win, the set of winning states.
foreach a € A do
| G(a) + fm;

end
Win < FReachGoal(fbg, G);
while Ja € A « G(a) ¢ Win(a) do

foreach a € A do

| G(a) + Win(a);

end

Win < FReachGoal(fbg, G);
end
return Win

Algorithm 2: F-Synthesis(fbg)
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Figure 5: Computation of winning products.

state the formula encoding the set of products for which this
state is also winning. We compute it again via fixed-point
computation, starting with G(a) = T for any a € A (that
is, accepting states are goal states for all products). At each
iteration, we compute the function Win according to the
current function G, and updates G accordingly. The fixed-
point is not reached iff after an iteration, an accepting state
is a goal state for a smaller set of products.

The procedure to compute the winning function Win is
formalised in Algorithm 3. In the initialisation, every state
is considered winning for no product (Lines 1-3). At each
iteration, we remove a transition from Waiting and analyse
it (Line 5). The analysis splits into two parts depending on
whether the target state is reached for the first time (Lines
9-16) or not (Lines 17-28). The first part is the ezploration.
The target state is added to the Visited and its outgoing
transitions are added to Waiting in order to pursue the ex-
ploration further. If the target state is a goal state then the
source state is possibly a winning state. Hence, we re-put
the transition into the Waiting set in order to trigger the
second part of the loop, i.e. the re-evaluation. Therein, we
determine for which products the source state of the transi-
tion is a winning state, depending on whether its outgoing
transitions are controllable or uncontrollable. Figure 5 illus-
trates the winning conditions in both cases. In the control-
lable case (Lines 18-20), state ¢ is winning for a product p
iff there exists a transition from ¢ available to p leading to a
state which is a winning state or a goal state for p, that is,

p | Win(q) & 3(q,0,9') € 6. «
p (g, 0,4") A (Win(q') v G(d))).
If we apply the above formula to the whole set of products,



we obtain that the set of products for which ¢ is winning via
q' is encoded by the conjunction of v with the disjunction
of Win(q') and G(¢'). We thus have

Win(q) & \/ (v(g,0”,4") A (Win(qd") v G(q"))).
(g,0”,q")Eb¢

The uncontrollable case (Lines 21-23) is more subtle. A
state ¢ is winning for product ¢ iff all the following conditions
hold:

1. At least one transition from ¢ is available to p.

2. All the transitions from ¢ available to p lead to a state
which is a winning state or a goal state for p.

Accordingly, the products for which p is winning are cap-
tured by the formula

( V

(g,0",9") €S

’y(q, O_//7 q//))/\

(v(g,0",q") = Win(¢") v G(¢")).

(g,0",q9"" )€y

In the second half of the loop of Algorithm 3, we apply the
above two formulae to compute the set of products for which
a state is winning (Lines 18-23). If this set has changed with
respect to prior computations, the algorithm re-evaluates
the winning condition for the predecessors of ¢ that it visited
earlier (Lines 24-27).

Input: bg = (Q, %, d¢,, du; g0, 4, B), G C A.
Output: Win, the states that can reach a state in G.

1 foreach ¢ € Q do
2 | Win(q) =L;
3 end
4 Visited < {qo};
5 Waiting <+ {(q0,0,q) € dc Udu};
6 Depend(qo) + 0;
7 while Waiting # () do
8 Take t = (g, 0,q") € Waiting;
9 if ¢’ & Visited then
10 Visited < Visited U {q'};
11 Depend(q') + {t};
12 Waiting + Waiting U {(q’,0,q") € c Udu};
13 if ¢’ € dom(G) then
14 | Waiting < Waiting U {t};
15 end
16 end
17 else
18 if t € 6. then
19 Win* «
Vigoranes. (1(a0”,d") A(Win(g")VG(q")));
20 end
21 else
22 Win* « (\/(q70//’q//)65u ¥(g,0”,q")) A
Ngrorr anyes, (1@, 0", d") = Win(q") v G(g"));
23 end
24 if Win* ¢ Win(q) then
25 Win(q) < Win*;
26 Waiting + Waiting U Depend(q);
27 end
28 end
29 end

30 return Win

Algorithm 3: ReachGoal(bg, G)

After applying the algorithm to compute the winning func-
tion, two cases may happen. If the initial state ¢o is not

winning for at least one valid product , then the SBPLS is
inconsistent for all products and no controller can be synthe-
sized. Otherwise, we can extract from the FBG a controller
for any product p satisfying Win(qo) by (1) removing ev-
ery state ¢ in the FBG such that p does not satisfy Win(q)
as well as its incoming and outgoing transitions; and (2)
computing the projection of the resulting FBG.

Instead of a controller for an individual product, we can
keep a concise representation for the controllers of all prod-
ucts. To that aim, we have to make each state inaccessible
to the products for which the state is not winning. This
is achieved by replacing the formula labelling any incoming
transition of each state g by its conjunction with Win(q).
In this case, the products have access only to the states that
are winning for them. Also, products for which the specifi-
cation is inconsistent should not be produced; one can thus
add a constraint in the FM that makes these products in-
valid. This variability-aware controller can be regarded as
a featured transition system, i.e. an extension of transition
systems that model the behaviour of SPL products [8]. It
is therefore possible to further analyse the controller using
dedicated model-checking algorithms [8], thereby determin-
ing the relevant properties of each product for which the
specification is consistent.

6. IMPLEMENTATION AND EVALUATION

We implemented our all-at-once synthesis algorithm as

part of our Eclipse-based tool suite SCENARIOTOOLS.! SCENARIO-

TooLs supports the modeling of SBPLS through the use of
UML profiles. It also supports the synthesis of SBPLS. First,
the tool performs an initial exploration of the model to cre-
ate the states and transitions of the corresponding FBG,
including states modeling violations. It then applies the
algorithms presented above to determine whether the spec-
ification of some variants is not realizable, and extract a
controller for the other products, if any. Our project re-
lies on the JDD 2 Java library to encode formulae over the
features into a Binary Decision Diagrams (BDD) [1, 6].

We used our tool to verify the consistency of all products
of the tea vending machine SPL, and they were all realizable.
We also carried out experiments to assess the efficiency of
the all-at-once synthesis with respect to (1) the successive
synthesis of each product separately, and (2) our previous
incremental on-the-fly synthesis algorithm [15]. On-the-fly
means that the algorithm may only visit a subset of the game
graph to find a system strategy, which can lead to drastic in-
creases in performance [7]. In addition to that, our previous
algorithm further facilitates the synthesis by attempting to
replicate, during the synthesis of a new product, the strategy
used to synthesize the previous product.

All benchmarks were run on a Windows PC with a 2,4
GHz Intel Core 2 Duo processor and 4 GB of RAM. We re-
peated each experiment 20 times and computed the average
of the synthesis times. For our experiments, we use a tech-
nical example, which we name the cascading example. Its
structure is presented in Fig. 6. Each feature in the FM has
two child features, connected with an OR-relationship. Each
feature is associated to one MSD named after the feature.
The first message of an MSD is a cold, monitored message
and is followed by one hot, executed message. All messages
are controllable by the system except the first message of the

http://scenariotools.org
*http://javaddlib.sourceforge.net/jdd/



MSD of the root feature, which is an environment message.
The first message of the MSD of another feature corresponds
to the hot message of the MSD of its parent. This way, one
activation of an MSD further triggers the activations of MSD
of its child features, hence the name cascading.

Legend:
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Figure 6: The evaluation example

We derive multiple examples following the previous scheme,
thereby creating SBPLS for 3, 5, 7, 9, 11, 13, and 15 fea-
tures. The valid combinations of those features respectively
lead to 3, 7, 15, 31, 63, 127, and 255 products, which rep-
resents an exponential increase in both the number of prod-
ucts and the number of FBG states. We also create two
other variants of this technical example. The first follows
an identical pattern, except that all decomposition types are
XOR. This yields SBPLS with a significantly lower number
of products (i.e. 2, 3, 4, 5, 6, 7, 8 variants, respectively).
The last variant keeps the OR decomposition type, but we
intentionally increase the number of alternative paths that
an on-the-fly algorithm could avoid. For this purpose, we
duplicate the hot message in the MSD of every child feature
of the root (e.g. Cascade2_1). Thus, after the first hot mes-
sage is sent, the algorithm can non-deterministically choose
between sending the second message or the first message of
the newly activated MSDs. This modification drastically
increases the number of alternative runs, due to the high
number of ways enabled events can interleave.

Table 1 shows how synthesis time increases with respect
to the number of features for every example. It provides the
parent-child relationship and the number of hot messages in
each MSD (e.g. OR(1) stands for OR decomposition and one
hot message), the number of features involved, the number of
valid products, and for each approach the average number of
explored states, the average synthesis times, and finally the
speedups provided by our all-at-once (A-a-0) algorithm wrt.
the product-by-product synthesis (P-b-p) and our previous
on-the-fly, incremental method (OTF-Inc).

Let us first compare our all-at-once algorithm wrt. the
product-by-product method. In the XOR cases, we see that
the number of states explored and the average synthesis time
using our A-a-o are about halved wrt. P-b-p. When deal-
ing with OR decompositions, and thus with a steeper in-
crease in the number of products, we observe even more
improvements: when synthesizing 255 products, A-a-o vis-
its only 573 states in the OR(1) case and 70222 states in the
OR(2) case, whereas P-b-p visits 22196 and 169475 states,
respectively. This leads to a speedup of 19.97 and 29.21,
respectively. More generally, the relative performance of A-
a-o tends to rise as the number of products increases.

[ | — [ <<reare>
<<BaseFeature>> Cascade1 J | C: Cascade2_1 )l Cascade2_1 Cascade2_2 )l Cascade2_2
CascadeRoot
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Figure 7: A-a-o and OTF-Inc applied to the OR (2) case
with three features.

We then compare our A-a-o algorithm with our previous
OTF-Inc synthesis. In the XOR(1) case the two algorithms
perform quite closely. We observe that the all-at-once algo-
rithm still explores less states, but the difference in synthe-
sis time is not substantial. The reason is that A-a-o has
to deal with an additional overhead, i.e. the management of
BDDs use to encode the feature formulae encountered in the
FBG. In this case, the overhead is not offset by the heuris-
tics offered by A-a-o. Benefits are, however, observed in the
OR(1) case. In the largest case of 15 features (255 products),
A-a-o visits only 573 states (against 2718 for OTF-Inc.),
which allows it to reach a speedup of 1.8. As against P-
p-b, this speedup also tends to increase with the number
of features and products, although not as remarkable as the
speedup related to P-p-b. Still, this is a noticeable result as
it shows that even without being on the fly, our algorithm
can outperform an optimised algorithm such as OTF-Inc.
We notice that for 3, 5, 7, and 9 features in the OR(2) case,
the A-a-o synthesis also still outperforms OTF-Inc. How-
ever, this is not true for the other cases. As an attempt to
explain this phenomenon, we analyzed in depth the behavior
of each algorithm when applied to this example.

Figure 7 illustrates the behavior of both algorithms on the
OR(2) case with three features. Black states and transitions
represent the (part of the F)BG related to the product with
all features. After m1 is sent, our A-a-o algorithm explores
all the six alternative paths leading to state 1 whereas OTF-
Inc can avoid visiting all of them, and even potentially visit
only one. The additional parts that are explored to syn-
thesize the other products are depicted in orange. In the
FBG, only two transitions are added to the graph. Con-
versely, even if it explores only parts of the state space for
each variant, OTF-Inc needs to explore one more graph for
each other variant of the SPL. In the end, it explores more
states than A-a-o, which is why the latter is faster.

However, when the number of avoidable paths grows, as in
the 15-feature case, OTF-Inc starts performing better, even



Table 1: Synthesis times for the cascading example with OR and XOR decomposition.

#States Time (ms) Speedup
Experiment #Features #Products A-a-o ‘ P-b-p ‘ OTF-Inc || A-a-o ‘ P-b-p ‘ OTF-Inc || P-b-p ‘ OTF-Inc

XOR (1) 3 2 4 6 6 12 12 12 1 1

XOR (1) 5 3 6 11 11 21 34 14 1.62 0.67
XOR (1) 7 4 8 16 16 29 41 20 1.41 0.69
XOR (1) 9 5 10 22 22 31 57 25 1.84 0.8
XOR (1) 11 6 12 27 27 32 7 29 2.41 0.9
XOR (1) 13 7 14 33 33 38 81 39 2.13 1.02
XOR (1) 15 8 16 39 39 45 82 46 1.82 1.02
OR (1) 3 3 5 11 10 12 15 11 1.25 0.92
OR (1) 5 7 11 42 32 17 45 15 2.65 0.88
OR (1) 7 15 26 158 86 79 219 96 2.77 1.21
OR (1) 9 31 56 546 218 138 451 197 3.27 1.43
OR (1) 11 63 111 1718 506 219 1459 341 4.88 1.56
OR (1) 13 127 243 6060 1190 508 5862 834 11.54 1.64
OR (1) 15 255 573 22196 2718 1260 25161 2267 19.97 1.8
OR (2) 3 3 10 18 14 43 98 108 2,27 2.51
OR (2) 5 7 29 92 50 197 554 250 2,81 1.27
OR (2) 7 15 83 429 142 383 866 450 2,26 1.18
OR (2) 9 31 245 1921 374 712 2948 805 4,14 1.13
OR (2) 11 63 704 7685 886 1309 7891 1087 6,03 0.83
OR (2) 13 127 2108 35407 2126 7388 47877 5237 6,48 0.7
OR (2) 15 255 7022 169475 4926 23255 | 679356 13364 29,21 0.57

in the number of explored states. As the number of features
grows, the probability to have different but equivalent paths
in the game graph also increases. When the number of those
alternative paths is high, OTF-Inc avoids visiting a large
part of the graph, which is more efficient than exploiting
the commonalities between the variants. Even if this seems
a mitigated result for our new algorithm, this opens interest-
ing perspectives, as we could design an on-the-fly version of
our all-at-once algorithm, which would benefit from the two
heuristics. This is far from a straightforward task, though,
as both the encoding of variability and the on-the-fly ex-
ploration brings substantial modifications to the synthesis
algorithm. We therefore left that for future work.

7. RELATED WORK

There are many approaches for consistency-checking and
synthesizing controllers from scenarios [30, 17, 4, 18, 14, 26].
However, these consider only single systems.

The relationship between FMs and UML models was stud-
ied, e.g., in [23, 29, 28]. Ziadi et al. synthesize statecharts
from sequence diagrams where interaction fragments can be
annotated to be active only in certain variants [31]. How-
ever, they do not consider that inconsistencies may arise
between the scenarios or the features. Ghezzi and Molzam
propose a similar formalism, and then verify non-functional
requirements using probabilistic model checking [13]. How-
ever, they do not consider concurrent scenarios. Shaker et
al. proposed to model SPL behavior with a combination of
FMs and a feature-aware extension of statecharts [28], where
features are introduced as a new parallel region, and may
change the priorities or the triggering conditions of transi-
tions. In the past, we defined featured transition systems
as a variability-aware extension of transition systems [9, 8].
They rely on similar mechanisms we used to encode variabil-
ity as Boolean formulae in FBRG. We also designed verifi-
cation algorithms to check properties expressed in temporal
logics. None of these methods is equipped with consistency
checking or synthesis mechanisms. In particular, in [9, 8] we
assumed that the transition system was given a priori; now,
we can produce it from a scenario-based specification whose
consistency has been previously checked.

Apel et al. [2] extended Alloy with collaboration-based de-
sign and feature composition. The Alloy Analyzer can then
detect structural and semantic dependences between the fea-
tures. However, Alloy cannot express complex behavioral

interactions and detect inconsistencies in them. SPLVeri-
fier [3] is a tool for verifying inconsistencies and harmful
feature interactions in C or Java code. Safety properties
are inserted into the code in the form of assertions; liveness
properties are, however, not supported.

Harhurin and Hartman propose an approach for model-
ing and consistency-checking families of service-oriented sys-
tems [22]. They model possible service compositions and
formally specify constraints on the input and output se-
quences of the ports of a service. Then, combinations of
input/output ports that are incompatible in a certain prod-
uct can be detected by using a theorem prover. In compari-
son, our approach allows the requirements engineer not only
to consider the input/output behavior of a single service,
but also the interactions between multiple components.

Most recently, Cohen and Maoz [10] modeled the variabil-
ity of the different live sequence charts semantics, and built
a tool that can perform analyses on these sequence charts
whose results change according to the selected semantics.

8. CONCLUSION AND OUTLOOK

We presented a novel synthesis algorithm that is able to
produce a controller for every consistent variant of an SPL,
exploiting the similarities between them. In the end, one
can obtain a specific controller for each consistent product
of the SPL, or a featured controller that concisely specifies
the consistent behaviors of all products. In the latter case,
we can rely on efficient SPL model-checking techniques such
as [8] to investigate the satisfaction of complex temporal
properties by all products. This combination of synthesis
and model checking offers interesting application perspec-
tives, as they provide a complete approach ranging from
an intuitive modelling language to the verification of criti-
cal behavioral requirements. They would require, however,
a proper integration of ScenarioTools and an SPL model
checker such as ProVeLines [11].

Another important work is to continue improving the prac-
tical performance of our algorithm. We will study how to
combine it with heuristics to explore the FBRG on the fly
to avoid redundant paths in the graph. While this will re-
quire a lot of work, we believe combining both approaches
can yield drastic reductions in synthesis time. Moreover,
we will study the applicability of SPL-specific optimisations
designed for model checking [8] to our synthesis methods.
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