
Towards Application and Evolution of Model-Based
Heuristics for Improving SOA Service Design

Kai Niklas
Talanx Systeme AG

Enterprise Architecture Management
Hannover, Germany

kai.niklas@talanx.com

Joel Greenyer
Leibniz Universität Hannover
Software Engineering Group

Hannover, Germany
greenyer@inf.uni-hannover.de

Kurt Schneider
Leibniz Universität Hannover
Software Engineering Group

Hannover, Germany
schneider@inf.uni-hannover.de

Abstract—Good service design is key to acceptance and suc-
cess for a service-oriented architecture (SOA) in an enterprise.
Enterprises try to achieve good service design by using guide-
lines which combine experts’ experience, company policies and
best practices. Applying, evolving and maintaining guidelines
overburdens service designers and reviewers due to the amount
and volume. This results in inefficient, costly and frustrating
processes. Without an automated support, guidelines provide only
limited value to the design process. We describe how our design
environment prototype addresses these problems and introduce
automatic guideline checks using heuristics on service models.
Our evaluation confirms applicability and advantages of our tool.
We present a selection of heuristics which are used in our tool. As
the second contribution we describe our plan of how to support
evolution and maintenance of guidelines and heuristics.

Index Terms—Service Oriented Architecture (SOA); Modeling;
Heuristics; Experience; Static Analysis

I. INTRODUCTION

To achieve the goals and benefits of service oriented archi-
tectures (SOA), e.g., reusability and maintainability, several
aspects have to be considered. In particular, the service design
is important which is addressed by quality attributes, e.g., loose
coupling and discoverability [1][2][3]. Additionally to well-
known quality aspects, each company has its own policies, such
as conventions and restrictions, which have to be considered
for service design in practice.

The design phase is critical since the design of services has
an impact on goals and benefits for business and IT in a SOA.
We focus on the design phase as it is well known that finding
and fixing problems after deploying a software in production
is 100 times more expensive than in an early phase [4].

A common approach for designing services is to use
modeling languages such as UML, SoaML [5], or domain
specific (modeling) languages (DSL). The service model is
then used to generated documentation, technical artifacts for
implementation, e.g., WSDL and code.

To ensure the quality of service design, guidelines are used to
check the quality of service models. To date, the definition and
check is done manually by experts since most quality aspects
are only described informally in written text. In practice we
observe that especially novices and inexperienced designers
have problems following design guidelines. Supporting novices
and checking guidelines manually cost a lot of time. Even
experts struggle with the amount and complexity.

Works from Gebhart et al. formalize quality aspects into
metrics [6]. Unfortunately, these formalizations focus on
some general aspects only and still need manual intervention
by experts before checking them automatically. In practice,
modelers’ knowledge and motivation are not high enough to
perform such required manual tasks.

Our study is embedded and evaluated at Talanx Systeme
AG, an IT service provider for insurance.

Our two main research questions are:
(RQ1) Is it possible to relieve designers and experts in

the early stage of service design by checking guidelines
automatically using heuristics?

(RQ2) Is it possible to use quality assured service models
to improve our heuristics?

Our main contributions in this article are:
First (C1) we present a prototype to demonstrate and evaluate

the applicability of applying heuristics on service models. In
particular we show that our design environment is able to detect
design guideline violations which are mostly first discovered
in reviews. Hence, the time and effort for manual reviews can
be reduced.

Second (C2) we formulate the most important requirements
towards automated application, evolution and maintenance of
guidelines and heuristics. These requirements are derived from
a service design process which is also presented in this article.

Third (C3) we give concrete examples of guidelines and
heuristics for the domain of service design. Additionally, we
correlate them with general goals & benefits of SOA.

Fourth (C4) we introduce a general process for engineering
guidelines and heuristics based on industrial experience.

In the next chapter we present the foundations and challenges
of quality assurance in service design. Next we motivate the
automatic application of heuristics based on a service design
process. We then present our heuristic engineering process and
a selection of design guidelines and heuristics. Next, necessary
improvements towards the evolution and maintenance are given.
Afterward, we conduct an industrial study to demonstrate the
applicability checking service models automatically using our
prototype. We then compare and classify our approach with
related work.

II. FOUNDATIONS AND CHALLENGES OF QUALITY
ASSURANCE IN SERVICE DESIGN

The process to establish services in a SOA is complex and
several frameworks and life-cycle models exists, e.g., Erl [1],
SoaML [5], SOMA [7]. In brief, services are firstly identified,
then specified and finally implemented. The concrete service
interface definition is part of the specification phase and central
to our research. We use the term service design and service
specification synonymously in this article. We assume that the
definition of services is done using a modeling language such
as UML, SoaML or a DSL resulting in a service model.

A. Service Design Guidelines

Enterprises try to achieve good service design by using
design guidelines. Guidelines are mainly based on theoretical
knowledge from books, e.g., Erl [1][3], Josuttis [2], practical
experiences and company policies. The guidelines are created
and managed by a central SOA team (SOA architects).

The major aims of design guidelines are to 1) avoid known
design mistakes and pitfalls, 2) achieve SOA goals, e.g.,
increased intrinsic interoperability, 3) achieve SOA benefits,
e.g., increased organizational agility, 4) establish a common
knowledge base and principles for modeling and governance.

Unfortunately, design guidelines have some downsides: 1)
Complexity and unawareness having a high number of design
guidelines. 2) Variety of interpretation having guidelines in
free text form. 3) Effort during modeling to comply with the
guidelines. 4) Effort during quality assessment to check all
guidelines. 5) High barrier for inexperienced designers and
architects.

B. Service Design Heuristics

The downsides of design guidelines (as described above) can
be mitigated by applying them on service models automatically.
Therefore, guidelines have to be engineered into executable
code first. Guidelines can get very complex and they are written
for humans. Hence, complex methods and algorithms are
necessary to codify such guidelines. As this is often not possible
we decided to use heuristics. Due to simpler decision procedures
they allow to make decisions fast in cases of uncertainty and
complex situations.

Definition 1: In the domain of service design a heuristic is an
analytical procedure to make statements about a service model
having limited time, knowledge and information. Hypothesis
are used which proved to be valid, but may lead to wrong
statements.

Example 1: Guideline: “The functionality of a service has
to be documented well." – Heuristic: “IF the service documen-
tation contains less than five words THEN the documentation
should be revised."

In the example above, we do not exactly know in which case
a service is well documented. But based on our experience,
we can formulate a hypothesis respectively a heuristic. The
heuristic can be used to check the model and hence our
guideline. Of course, a more complex linguistic method would

Fig. 1. Service design process with focus on quality assurance.

be desirable to be more precise. But the given heuristic is a
good trade-off between effort and benefit.

In general, humans often rely on simple heuristics. Heuristics
mimic an expert who detects design flaws in a similar way.
Additionally, simple heuristics may perform better than complex
models [8]. Especially, in the early design phase only a limited
amount of information is available.

III. IMPROVING THE SERVICE DESIGN PROCESS

Figure 1 illustrates a service design process with focus on
quality assurance.1 The service designer creates service models
based on the requirements analyzed by the business analyst.
The designer is mentored by a coach (SOA architect). Service
designs are checked against design guidelines by the coach
and submitted to the SOA quality board (SQB). The SQB
consists of IT and business architects who perform a review.
The SQB has two results: 1) Remarks on the model which
are transported to the modeler via the coach and 2) new or
modified design guidelines for the knowledge base. Based on
the service model necessary artifacts like documentation and
technical description, e.g., WSDL, are generated and published
to the service repository. Now, service developers can develop
or integrate the technical service.

The main problem of the process denoted in Figure 1 is
the effort and time exposure to 1) check design guidelines
manually, 2) give design advices and 3) to correct the service
model in order to comply to the guidelines. Unfortunately, these
three steps are often repeated due to humans mistakes, new
requirements, or revised models which introduce new design
flaws by trying to correct the old ones.

1In Fig. 1 we use the FLOW notation [9] to illustrate information and
experience flows between people and documents.

Business

Goal & Benefit

Design

Principle

Design

Standard

Heuristic

*

*

*

*

s
u

p
p

o
rt

*

*

Fig. 3. Correlation of heuristics and business goals & benefits in context of
SOA

A. Improvements Checking Design Guidelines Automatically

During modeling our prototype substitutes basic tasks of
the coach. The design environment detects design flaws
automatically using heuristics similar to those the coach would
also apply by hand. That means the coach as central element
can be relieved by the tool and is able to focus on more complex
and relevant topics which heuristics do not cope. Furthermore,
the coach is not any longer a bottleneck in the design process.

Later, in the SQB, known design flaws cannot be missed as
they are highlighted in the design environment. Additionally,
quality reports can be created automatically based on selected
heuristics, e.g., the quality of service documentation. This is
useful for an effective and efficient SOA governance.

IV. SERVICE DESIGN GUIDELINES AND HEURISTICS

Figure 2 gives an overview of the engineering process which
we have applied. We divided the process into three steps. 1)
discovery of knowledge, 2) engineering of guidelines and 3)
engineering of heuristics. Important are the review steps while
engineering to increase precision and recall of our heuristics.

For this article we started with 85 service design guidelines
from the knowledge base of an IT service organization for
insurance. These guidelines are mainly free text descriptions.
After an expert review we identified 62 relevant modeling
guidelines. We were able to identify and derive 50 computable
heuristics. There are six main reasons that we cannot formulate
heuristics for all guidelines at the moment.

Language: Specific language aspects are difficult or impos-
sible to check. Inaccessible information, e.g., statelessness
of application. Imprecise formulations, e.g., “use common
naming conventions". Usage of standards, e.g., ISO. Runtime
behavior, e.g., the maximum response time of a service.
Complex logic which have to be specified first.

A. Correlation between Heuristics and SOA Goals & Benefits

By applying design principles successfully, corresponding
goals and benefits will be attained [3]. Figure 3 illustrates
the correlation between heuristics and business benefits in the
context of service design. Design principles are supported by

TABLE I
EXAMPLES FOR HEURISTICS WHICH SUPPORT DESIGN GUIDELINES,

PRINCIPLES AND BUSINESS GOALS & BENEFITS.

Reusability
Goal & Benefit Increased Return On Investment (ROI)
Guideline Service returning arguments: Returning argu-

ments should be encapsulated in own (complex)
type to stay extensible.

Heuristic ∀i : service.out.attribute[i] = complexType
Loose Coupling
Goal & Benefit Reduced IT Burden
Guideline Asynchronous Communication: The exchange

of large files (binary) should be handled asyn-
chronously.

Heuristic ∃i : attribute[i].type = binary ∧ ser-
vice.communication = asynchronous

Standardized Service Contract
Goal & Benefit Increased Return On Investment (ROI)
Guideline Usage of business objects: Services should use

common business objects (BOs).
Heuristic ∃i : attribute[i].type = BO
Discoverability
Goal & Benefit Increased Business & IT alignment
Guideline Naming of Service: Services should be named

based on its used business objects.
Heuristic ∃i : attribute[i].type = BO ∧ service.name

contains attribute[i].name
Statelessness
Goal & Benefit Increased Intrinsic Interoperability
Guideline Service returning arguments: Returning argu-

ments should be business objects, not IDs.
Heuristic !∃i : service.out.attribute[i].name endsWith

‘id’

design standards which give detailed advices on how to satisfy
the principles. Design standards can be patterns, best practices
or in our case guidelines. Heuristics help applying and checking
design standards which the following examples demonstrate.

B. Examples of Heuristics in the Domain of Service Design

In Table I five concrete heuristics are given. They are
categorized into design principles and enriched with business
goals & benefits and guidelines. For the notation of heuristics
we use predicate logic to stay model independent. If the
heuristic is not satisfied (false) the guideline is not satisfied
as well. Depending on the used modeling language it is then
possible to derive and implement the heuristics, e.g., using
OCL for UML models. To date, this is a manual step.

V. TOWARDS AUTOMATED APPLICATION, EVOLUTION AND
MAINTENANCE OF GUIDELINES AND HEURISTICS

We have implemented a first prototype of a service design
environment to demonstrate and evaluate our approach. It is
based on a company-specific DSL created with Xtext running
in Eclipse [10]. To date, we have implemented the following
main features:

Engineering

Extraction

Discovery

1. Discover

Knowledge

Knowledge

-source

3. Review

Guidelines

Guideline

4. Engineer

Heuristics

Heuristics

(Draft)

2. Engineer

Guidelines

Guideline

(Draft)

5. Review

Heuristics

Heuristics

Fig. 2. Process for engineering heuristics in context of service design

Fig. 4. Excerpt of an automatically checked service model using a design
guideline for extensibility

Immediate heuristic checks. We want to give the user
feedback as early as possible. In other design environments
checks have to be actively triggered from different perspectives
[11] or are executed during compilation [12]. This slows down
modeling and annoys users as the feedback loop is often slow.

In-place feedback. Figure 4 depicts such an in-place
feedback. Basic information about the detected design flaw is
given. Other design environments are only providing lists or
worse cryptic log files [12].

Detailed information about the finding are displayed in
a separate view next to the model editor. The user can
get background information and rational for the finding to
understand and learn.

Code templates: Skeletons, e.g., for a new service, can be
inserted based on best practices. This speeds up design and
avoids common pitfalls.

Alternative views: For more insights alternative views are
available, i.e., a UML like class diagram and an outline.

Quickfixes: Detected design flaws can be auto-corrected.

A. Necessary Improvements

We plan to investigate and implement the following points
to support the evolution and maintenance of guidelines and
heuristics.

1) Capturing of new design guidelines and heuristics: A
lot of knowledge is tacit and has to be externalized before it
can be applied automatically. Additionally, model differences
after error corrections can be exploited to extract knowledge
and correction proposals, e.g., Könemann et al. [13].

2) Formalization of guidelines and heuristics: A model
independent and formalized description of guidelines and
heuristics eases the engineering. It lowers the transformation
of guidelines into heuristics and enables the automate transfor-
mation of heuristics into executable code.

3) Automatic correction of design flaws: Correction pro-
posals which can be applied automatically help enhancing the
quality and lowering the effort. The effective and efficient

engineering of these proposals has to be explored. Especially,
the automatic creation of correction proposals is planned using
examples and their model differences.

4) Capturing of guideline violations and their rationale:
There is always the case, that a guideline has to be violated, e.g.,
a very specific requirement. A violation should be documented
and used for improving heuristics including the rationale instead
of only disabling the heuristic [14].

VI. INDUSTRIAL STUDY

We have conducted a feasibility study at Talanx Systeme
AG using our service design environment. Answers to the
following research questions are presented in the following.

RQ1: Is it possible to relieve designers and experts in
the early stage of service design by checking guidelines
automatically using heuristics?

RQ1.1: Are our implemented heuristics good enough in
comparison to experts?

RQ1.2: Which kind of design flaws does an expert detect
in comparison to our heuristics?

RQ2: Is it possible to utilize quality assured service models
to improve our heuristics?

RQ3: Can the quality of a heuristic be assessed on quality
assured models?

A. Study 1: Applying Heuristics on new Service Models

We chose a current but random service model which should
be quality assured. In our service design environment all
heuristics were deactivated and no expert gave design advices.
The designer was not aware of the experiment as we have not
introduced the automatic checks yet.

The service model was assessed in two ways, independently:
1) Using our design environment and 2) by asking an expert.
To answer our research questions we clustered the findings
into categories and compared them.

B. Study 1: Results & Discussion

The expert identified:
E1: 1 Input / Output parameter type misuse
E2: 5 general documentation hints
E3: 2 attribute naming convention violations
E4: 2 attribute type misuses
E5: 1 uncertain flaw (“Maybe the service is a duplicate.")

The implemented heuristics detected:

H1: 2 Input / Output parameter type naming convention
violations
H2: 5 general documentation hints
H3: 2 concrete documentation hints (i.e. string length)
H4: 1 attribute type misuse
H5: 2 false positives concerning naming conventions

Our heuristics detected 10 flaws, whereas the expert found
11 flaws. The answers to RQ1.1 and RQ1.2 can be summarized
as follows: 1) The application of our heuristics is comparable
to manual reviews by experts. 2) Experts’ findings are more
specific and respect a hierarchy of criticality. 3) Experts identify
additional flaws based on their experience.

Not all flaws can be detected using our design environment as
not all experts’ experience is captured. But several violations
against known guidelines can be eliminated before having
in-depth discussions with experts which saves time and
effort. Hence, RQ1 can be answered positively. The following
comparison and interpretation gives more details:

H1 and E1: Both findings correspond to the same flaw but
with different arguments. The heuristic claims that naming
conventions for input and output parameter types are violated.
The expert claims that input and output parameter reference
to the same type. The expert’s remark is more specific to the
underlying flaw than the heuristic’s remark.

H2 and E2: Both findings are equal.
H3 remarks that the length of strings should be documented.

The finding is correct but in the context of E4 and H4 obsolete
as both claim that the used type “string" is already wrong. So,
here is a hierarchy of criticality which should be considered
in future research.

H4 and E4: The heuristic found one type misuse as the
expert found two. This indicates that the heuristic lacks
information for detecting all kind of type misuses.

H5: The knowledge behind this heuristic is wrong which
leads to wrong detections. The heuristic has to be refined.

E5: The uncertainty was proven to be correct. A different
service could be used. That means, this finding overrules all
other. Here we have a hierarchy of criticality again. It would
be enough to focus on this finding first.

C. Study 2: Improving Heuristics

In study 1 we observed that our heuristics can be improved
using additional expert’s knowledge to detect more flaws (H4)
and to be more accurate (H5). In order to answer RQ2 we
examine three existing quality assured data models and three
heuristics. Data models are complex data types which are used
in our services. We chose the models based on their complexity
(low, medium, high) and three different heuristics.

The three models are:
M1: 21 attributes grouped in 4 subtypes
M2: 50 attributes grouped in 10 subtypes
M3: 314 attributes grouped in 25 subtypes

In order to examine if we are able to improve our heuristics
we conduct the experiment in two scenarios:
S1: Using heuristics without additional knowledge: All heuris-
tics are implemented as described in the knowledge base.

TABLE II
STUDY 2: RESULTS: HEURISTICS BEFORE (S1) AND AFTER (S2) ADDING

EXPERT’S EXPERIENCE.

M1 M2 M3
(TP, FP, FN) (TP, FP, FN) (TP, FP, FN)

R1
S1 (0, 0, 0) (0, 0, 0) (0, 0, 2)
S2 (0, 0, 0) (0, 1, 0) (2, 7, 0)

R2
S1 (20, 0, 4) (14, 0, 11) (75, 0, 2)
S2 (24, 0, 0) (25, 0, 0) (77, 0, 0)

R3
S1 (0, 1, 0) (0, 2, 0) (0, 27, 0)
S2 (0, 0, 0) (0, 0, 0) (0, 1, 0)

S2: Using heuristics with additional knowledge: Like S1 but
with additional expert’s knowledge.

Additional knowledge means, that an expert made a review
on the guidelines and heuristic and specified them more
precisely.

The three guidelines and their improved equivalents are:
R1: No attribute should contain unnecessary filler words.

S1: filler words = (data) / S2: filler words = (data, content,
file, object, key, value, list, table)
R2: All model elements should be documented.

S1: check if attributes contain documentation / S2: check if
attributes and complex types contain documentation
R3: The attribute name of an aggregation should be the same
as the aggregated element.

S1: check all aggregations / S2: check only 1:1 aggregations
For evaluating our heuristics we applied them on our models.

The findings were categorized by an expert into true positives
(TP, correctly detected flaw), false positives (FP, wrongly
detected flaw) and false negatives (FN, not found flaw). The
goal is to have many true positives and few false positives. We
did not count true negatives as they give us no more clues.

D. Study 2: Results & Discussion

RQ2 can be answered positively. Table II illustrates how our
heuristics evolved. By adding knowledge to our heuristics we
were able to raise the number of TP and to reduce the number
of FP. For example, we were able to detect all flaws on all
models for R2; and to reduce the number of FP for (M3, R3)
from 27 to 1. For R1 we can see that the optimization of our
heuristics is not optimal as not only the number of TP is raised
but also the number of FP. A better method for improving
heuristics is required.

Using heuristics R1 and R3 no TPs were detected in most
cases. Hence, we cannot compute typical numbers for the
quality of heuristics in general, i.e., precision and recall.
That means, evaluations on quality assured models are not
necessarily meaningful for evaluating the quality of heuristics.
For the presented scenario we have to answer RQ3 negatively.

We identified two possible reasons for this behavior. 1) The
vulnerability to design flaws depends on the modeled aspects.
Not every flaw detectable by a heuristic has to be present in the
current model. 2) High modeling quality. The manual quality
checks have eliminated many design flaws beforehand.

E. Threats to validity

Both experiments consider only a small range of models
and services. This reduces the significance of our statements
but the indication is still given. To remedy this fact we chose
a random model for study 1 and differently sized models for
study 2.

The used heuristics are company specific and are not
representative for all SOA projects. But we belief that this is
not relevant for applying heuristics and detecting design flaws.
Of course, experts’ opinions and heuristics have to match in
order to make valid statements about models.

VII. RELATED WORK

The basic design principles for service design, e.g., by
Erl [1][3] or Josuttis [2] can be assessed by hand. They are
documented but only available in free text form. This can be
compared to our knowledge base in which design guidelines
are documented.

Design guidelines intent to detect potential design flaws. For
the domain of static code analysis, tools exists, e.g., FindBugs
[15] or PMD [11]. For the domain of UML models tools exists,
too, e.g., ArgoUML [16] or SDMetrics [17]. To our knowledge
no such tool tackles (SOA) service design or is able to do it
in the way we proposed it.

A more formal method to assess the quality of service design
was proposed by Gebhart et al. by defining and using quality
metrics [6]. The metrics are a subset of the known SOA design
principles and can be applied (semi-) automatically, i.e., on
SoaML models. Gebhart also states, that metrics can be used
to detect design flaws but some need manual intervention. Our
concept uses heuristics which we belief are easier to engineer
and give immediate feedback while modeling. Furthermore,
we propose to use only automatic applicable heuristics without
any manual intervention.

Kannan et al. propose to analyze the whole process to
validate SOA design principles [18]. In comparison to our
approach different quality aspects of a SOA are tackled.
Furthermore, the approach has higher requirements as the
whole process has to be modeled at first.

Moha et al. proposes a concept to define and detect
SOA antipatterns [19]. Antipatterns are described within a
domain specific language, automatically compiled into detection
algorithms and then applied to a service based system (SBS).
They focus on evaluating a whole system, not concrete service
interfaces as we do.

Knauss et al. suggest to apply heuristics on requirements in
order to detect errors [20]. Heuristics are based on experiences.
Their concept is similar to ours, but based on a different domain
and engineering phase.

VIII. CONCLUSION & FUTURE RESEARCH

We illustrated how heuristics based on service design
guidelines can be automatically applied to detect design
flaws during design time. Therefore, we presented a design
environment prototype, which gives immediate feedback to the
designer. We motivated the benefits of our design environment

with the help of a service design process. Our industrial
study confirms that violations against known guidelines can
be eliminated before having in-depth discussions with experts.
This saves time and human resources doing manual reviews.

For our study we have engineered heuristics based on
existing design guidelines. We presented a general applicable
engineering process for designing guidelines and heuristics
based on existing knowledge. A set of industrial guidelines and
heuristics was presented for the domain of service design. The
correlation between business goals & benefits and heuristics
was illustrated with the aid of this set. We demonstrated that
heuristics can be improved by adding knowledge and evaluating
them on existing design models.

For future research we outlined necessary improvements
of our prototype to support evolution and maintenance of
guidelines an heuristics. Especially, the capturing of new and
modified guidelines and heuristics using model differences will
be the focus of our future research.

REFERENCES

[1] T. Erl, Service-oriented architecture. Prentice Hall Englewood Cliffs,
2005.

[2] N. Josuttis, SOA in practice: the art of distributed system design. OReilly:
Sebastopol, CA, 2007.

[3] T. Erl, Soa: principles of service design. Prentice Hall Upper Saddle
River, 2008, vol. 1.

[4] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
Foundations of empirical software engineering: the legacy of Victor R.
Basili, vol. 426, 2005.

[5] OMG, Service oriented architecture modeling language (SoaML), 2012.
[Online]. Available: http://www.omg.org/spec/SoaML/1.0.1/

[6] M. Gebhart and S. Abeck, “Metrics for evaluating service designs based
on soaml,” International Journal on Advances in Software, vol. 4, no. 1,
pp. 61–75, 2011.

[7] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and
K. Holley, “SOMA: A method for developing service-oriented solutions,”
IBM Systems Journal, vol. 47, no. 3, pp. 377–396, 2008.

[8] G. Gigerenzer and W. Gaissmaier, “Heuristic decision making.” Annual
review of psychology, vol. 62, pp. 451–82, Jan. 2011.

[9] K. Stapel and K. Schneider, “Managing knowledge on communication
and information flow in global software projects,” Expert Systems, 2012.

[10] Xtext, 2015. [Online]. Available: https://www.eclipse.org/Xtext/
[11] PMD, 2015. [Online]. Available: http://pmd.sourceforge.net/
[12] A. W. Brown, M. Delbaere, P. Eeles, S. Johnston, and R. Weaver,

“Realizing service-oriented solutions with the ibm rational software
development platform,” IBM systems journal, vol. 44, no. 4, pp. 727–752,
2005.

[13] P. Könemann, E. Kindler, and L. Unland, “Difference-based model
synchronization in an industrial mdd process,” in 2nd ECMDA Workshop
on Model-Driven Tool & Process Integration (MDTPI 2009), 2009.

[14] J. E. Burge and D. C. Brown, “An integrated approach for software design
checking using design rationale,” in Design Computing and Cognition

’04, J. Gero, Ed. Springer Netherlands, 2004, pp. 557–575.
[15] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM SIGPLAN

Notices, vol. 39, no. 12, p. 92, Dec. 2004.
[16] ArgoUML, 2015. [Online]. Available: http://argouml.tigris.org/
[17] SDMetrics, 2015. [Online]. Available: http://www.sdmetrics.com/
[18] K. Kannan, A. Bhamidipaty, and N. C. Narendra, “Design Time Validation

of Service Orientation Principles Using Design Diagrams,” Annual SRII
Global Conference, pp. 795–804, Mar. 2011.

[19] N. Moha, F. Palma, M. Nayrolles, B. Conseil, Y.-G. Guéhéneuc,
B. Baudry, and J.-M. Jézéquel, “Specification and detection of soa an-
tipatterns,” in Service-Oriented Computing. Springer Berlin Heidelberg,
2012, vol. 7636, pp. 1–16.

[20] E. Knauss, D. Lübke, and S. Meyer, “Feedback-driven requirements
engineering: the heuristic requirements assistant,” in International
Conference on Software Engineering (ICSE’09). IEEE, 2009, pp. 587–
590.

