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Abstract—Modern software systems are increasingly required
to run for a long time and deliver uninterrupted service.
Their requirements or their environments, however, may change.
Therefore, these systems must be updated dynamically, at run-
time. Typical examples can be found in manufacturing, trans-
portation, or space applications, where stopping the system to
deploy updates can be difficult, costly, or simply not possible. In
previous work we proposed a model-driven approach that uses
automatically synthesized finite-state controllers from scenario-
based assume/guarantee specifications to safely and efficiently
dynamically update the system. In this paper we describe an exe-
cution infrastructure of this approach, which allows us to execute
and deploy newly synthesized dynamically updating controllers
on embedded devices. We present a prototype implementation in
Java for Lego Mindstorms robots. This experience gained can
lead to a systematic approach to implement dynamic updates in
the aforementioned critical software-intensive systems.

I. INTRODUCTION

Modern software systems are often subject to changes.
Changes may occur due to evolution of the environment in
which they are embedded, or in the requirements, when the
currently supported functionalities need to be extended or
modified. These changes are often applied by performing
an offline update, which means shutting down the system,
applying a software patch, and restarting the system. However,
many systems are expected to run continuously even when
they are updated. In application areas such as manufacturing
or mobility, service interruptions can be costly. In space
applications, for example, interruptions can be very critical
or even impossible. Therefore, the software must be updated
dynamically, at run-time. Dynamic updates must be safe, the
service must remain available, and service changes must often
be performed as soon as possible.

In recent work [1], [2] we introduced a model-driven per-
spective for safe and efficient dynamic updates. We proposed
a set of criteria of correct dynamic updates with respect to
specification changes and elaborated an approach for auto-
matically synthesizing dynamically updating controllers from
scenario-based assume/guarantee specifications.

Dynamically updating controllers are essentially a structure
of two finite state models: the current controller and the

updated controller, implementing the current and updated
specification, respectively. Certain states in the current con-
troller, called updatable states, are connected to states in
the updated controller through update transitions. According
to this structure, a correct dynamic update occurs when the
control of the system execution migrates from the current
controller to the updated controller to satisfy the new spec-
ification. Such migration occurs when the execution reaches
an updatable state, follows an update transition, and continues
in the updated controller.

Controllers are executable models that are synthesized from
a scanario-based specification. After a change in the specifi-
cation a new dynamically updating controller is synthesized
and deployed for run-time execution.

In this paper we describe an infrastructure supporting this
approach, which allows us to deploy and execute newly
synthesized dynamically updating controllers on embedded
devices. Motivated by scenarios related to space applications,
we provide a prototypical implementation in Java for the Lego
Mindstorms robot systems. Although we regard the prototype
as a work-in-progress, which requires further evaluation, it al-
lows us to present here some of the challenges we encountered,
and lesson learned.

The paper is structured as follows. Section II summarizes
the foundation of this work with the help of a space robot sys-
tem as a running example. Section III describes the execution
infrastructure and its implementation. Section IV discusses the
related work. Section V concludes the paper.

II. FOUNDATIONS

In this section, we first present a running example of a
hypothetical Mars Robot System with its changing specifi-
cation. We then introduce the foundations of scenario-based
specifications and dynamically updating controllers.

A space exploration system used to explore the planet
Mars is sketched in Fig. 1. The system consists of a battery-
powered exploration robot moving on ground and a charging
station. We focus on a simplified scenario that specifies how
the robot behaves during the recharging procedure. Using



installed sensors, the robot is able to monitor its own position
and recognize where the charging station is located. As it
approaches the station, it is able to identify two perimeters of
different radii around the charging station: an outer perimeter,
and an inner perimeter. When crossing the outer perimeter, the
robot has to reduce its speed. When it reaches the charging
station it connects to the power supply. After recharging, it
leaves the station and continues its exploration.

Let us assume that a new space mission has been launched
and a second robot has landed on the planet. The two robots
now share the same charging station and, to avoid collisions,
a new coordination mechanism needs to be applied. The new
mechanism leads to a change in the specification of the first
robot: it introduces a new assumption that between the outer
and inner perimeter, the robot now also crosses an intermediate
perimeter. The change also introduces a new requirement:
when entering the intermediate perimeter, the robot must check
the status of the charging station. The station may be available
for the robot, or it may be unavailable, because it is charging
another robot. In the latter case, the robot must wait and after
some delay check the station availability again. For simplicity,
we will not consider the latter case in the following.

Changes in the specification require the robot system to be
dynamically updated, at run-time, in a safe and efficient way.

A. MSD Specifications

In our previous work we show how dynamically updating
controllers can be synthesized from specifications given as
Modal Sequence Diagrams (MSDs) [1], [2]. MSDs are a
formal variant of sequence diagrams introduced by Harel
and Maoz [3], similar to Live Sequence Charts (LSCs). An
MSD specification in our case consists of a set of universal
MSDs, which describe assumptions and requirements in the
interactions between the system and the environment. The
MSD lifelines represent system or environment components
that interact by exchanging messages. Messages have one
sender and one receiver; for simplicity, we only consider
synchronous messages, where the sending and receiving is a
single event, also called message event. Messages sent from
system components are controllable events; messages sent
from environment components are uncontrollable events.

Messages have a temperature and an execution kind. The
temperature can be either cold or hot and encodes the safety
properties of events in a scenario. Hot messages must not
be violated, which happens if a message event occurs that is
expected only at another point in the scenario. Cold messages
can be violated, and this violation terminates the scenario. The
execution kind can be either monitored or executed. Intuitively,
if a scenario reaches an executed message, the corresponding
message must eventually occur (liveness). If the message is
monitored, this message may occur. Hot message are red and
cold messages are blue. Monitored messages have a dashed
arrow, and executed messages have a solid arrow. For clarity,
we also use the labels (h/c, m/e).

As an example, let us consider the ApproachingCharg-
ingStation MSD in Fig. 1. The MSD contains lifelines that
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Fig. 2. Controller implementing S

represent the robot, the charging station and the natural en-
vironment. The natural environment and the charging station
are environment components and the lifelines labels therefore
have a cloud-like shape. The first message, representing the
outPerim message event, is a cold and monitored message,
and says that the scenario starts once the robot passes through
the outer perimeter. Then the robot must reduce the speed (hot
executed message).

We also use MSDs, marked with the «EnvironmentAs-
sumption» tag, to explicitly model assumptions about the
environment components [4]. The PassingPerimeters in Fig. 1
is an example; it specifies that whenever the robot passes
through the outer perimeter (outPerim), it must eventually
also pass through the inner perimeter (innPerim), and then
reaches the charging station (arrChargSt). The assumption
MSD ChargingFinished similarly says that we assume that
after the robot starts the charging process, the charging station
will eventually notify the robot that the charging has finished.

We consider the system to be controlled by a controller,
a finite state machine with two types of transitions: uncon-
trollable transitions and controllable transitions, labeled with
uncontrollable and controllable events of the specification,
respectively. The outgoing transitions of a state are either
all controllable all uncontrollable. In states with outgoing
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uncontrollable transition the system waits for corresponding
environment events; otherwise the system takes a controllable
transition and executes the corresponding event. Informally,
a controller implements a specification if all the resulting
sequence of events are valid in that specification.

Figure 2 shows a controller implementing the specification
S of the example with the initial state s0. The outPerim
transition between s0 and s1 is uncontrollable, meaning that
initially the system has to wait for the outPerim event to occur.
(Other environment events can also occur, but they will not
progress the state.) The reduceSpeed transition between s1
and s2 is controllable, meaning that if the system is in state
s1 it has to execute the reduceSpeed event.

As mentioned earlier, the introduction of a second robot
leads to changes in the specification. We model such changes
by introducing a new MSD specification based on the previous
one, in which diagrams can be added or removed.

In our example, the new specification S′, is obtained
by adding the requirement and assumption MSDs shown
in Fig. 3. The MSD CheckingStationAvailability specifies the
extra check of the availability status of the charging station;
the assumption MSD ReplyStationAvailability formulates the
assumption that the charging station will reply to the robot’s
status request. (For simplicity, we omit the possibility that
it may not be available, along with the behavior required in
this case.) Furthermore, we add the environment assumption
PassingIntermPerim that says that the robot will pass the
intermediate perimeter between the outer and inner perimeter.

B. Dynamically Updating Controllers

In our previous work we defined a correctness criterion
for dynamic updates based on specification changes [1]. This
criterion defines in which state the system is updatable, and
can safely disregard the obligations given by the current spec-
ification and start behaving according to the new specification.

According to this criterion, dynamic updates are guaranteed
to be equivalent to an offline update (in terms of the events in
the specification). Under the assumption that an offline update
is safe, which especially means that a system can be safely
shut down and restarted in its initial state, a dynamic update
that follows this criterion is also safe.

We also proposed an approach to automatically synthesize a
dynamically updating controller from changing MSD specifi-

  
change in requirements or
environment assumptions

Specification S Specification S'
(assumption or requirement
MSDs added or removed)

current  controller
(c)

dynamically updating controller

is implemented by

remains of the 
current controller

(“c-part”)

added controller for 
implementing S'

(“c'-part”)

updatable states added update transitions

automated
synthesis

removed transitions

++ ++

++ ++

++

++

++

++

++
++

++

++
++

++

Fig. 4. Synthesis of Dynamically Updating Controllers

s'0

s'1

s'2

s'15

s'17

outPerim

reduceSpeed

arrChargSt

s'18

s'20

connectToSt

exitArea

c'

s'19

startCharg

chargFinished

s'3

intermPerim

s'5

intermPerim reduceSpeed

s'7

innPerim

s'8

checkStStatus

s'12

stationAv(true)

innPerim

s'6

checkStStatus

stationAv(true)

reduceSpeed

s'9

s'13

innPerim

s'10

stationAv(true)

reduceSpeed

s'14

innPerim

s'16

arrChargSt

s'11

checkStStatus

stationAv(true)

s0

s1

s2

s3

s4

outPerim

reduceSpeed

innPerim

arrChargSt

s5

s7

connectToSt

exitArea

c

s6

startCharg

chargFinished

ε

ε

ε

Fig. 5. Dynamically Updating Controller of the example

cations. Figure 4 summarizes the approach. It takes as input the
current MSD specification S and the new specification S′, and
the currently executed controller c, which implements S. We
then synthesize a maximal controller c′ of all valid executions
in S′. By comparing the sequence of events generated by
c (in the new environment specified by S′) with the ones
generated by c′, it is possible to identify all the executions
starting in c that can be completed by c′ to satisfy the new
specification. We also identify the updatable states, states of
the current controller in which the system can safely abandon
the current obligation and migrate its execution control to the
new controller c′. Such migration is obtained by adding update
transitions from updatable states (in c) to states in c′. For
further details refer to our previous work [1].

Figure 5 shows the dynamically updating controller of our
example. On the left side of the figure we find the current
controller c and on the right side the synthesized controller
c′. Three updatable states are identified in this case: s0, s1,
and s3. In short, the other states are not updatable, because
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either something has happened which cannot be completed
to a run that will satisfy the new specification, or because it
is not know whether something has happened that requires a
specific reaction according to the new specification. In state s2
for example, the current controller does not capture whether
intermPerim has occurred or not; in state s3, however, when
innPermin occurred, we know that intermPerim has occurred.

III. EXECUTING DYNAMICALLY UPDATING CONTROLLERS

In this section we describe an execution infrastructure for
deploying and executing dynamically updating controllers on
a running system. Figure 6 shows an overview. It essentially
consists of three parts. The first part (1) is the executor thread,
which executes a current dynamically updating controller.
The thread maintains a pointer on the current state of the
execution and executes system events or waits for environment
events. The second part (2) is the deployer thread, which
is responsible for deploying a new dynamically updating
controller, which will be transmitted to the running system.

The third part (3) is the event mapping, which will translate
events from the specification to events of the system. This
mapping is necessary, because in the specification, engineers
and other stakeholders may formulate the requirements and
environment assumptions on a higher level of abstraction; the
running system, instead, may have to operate on lower level
events. For example, the outPerim event in the specification
may translate to a specific event of the ultrasonic sensor of
the robot; events like exitArea for example, may translate to
a sequence of signals that the system’s microprocessor sends
to the motors to rotate and accelerate the robot.

We implemented a prototype of the execution infrastructure
for the Lego Mindstorms NXT robot system. The system is
based on an Atmel 32bit microcontroller running at 48MHz
and addressing 256Kb of flash memory and 64Kb of RAM.
Although these strict constraints, the microcontroller is capable
of running a small Java virtual machine, called Lejos 1, which
will be used in this implementation. The CPU brick can be

1http://www.lejos.org
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connected to up to 3 motors, and up to 4 sensors (possible
sensors are: buttons, light sensors, sound sensors, ultrasonic
distance meters). The system also supports connection via
Bluetooth, which will be used to send the dynamic update
commands from a remote machine.

The remainder of the section describes the different parts of
the execution infrastructure in more detail. We first describe
the event mapping, and then the executor and the deployer
threads.

A. Mapping specifications events into concrete robot events

As a prerequisite for executing the dynamic controller on the
robot system we need to define a mapping from controllable
and uncontrollable events in the specification to concrete
events occurring in the robot. More precisely, we need to
define a way in which the controllable events in the controller
can affect the actuators, and how the events monitored by the
sensors are mapped to uncontrollable events in the controller.

Also in this case we use finite state controllers to define
the sequences of concrete events associated with specification
events. There are sensor input mapping finite state controllers
and actuator output mapping finite state controllers, which are
all executed in parallel.

Figure 7 shows two examples of such event mapping finite
state controllers. On the left, we see the finite state controller
that generates the arrChargSt event as the result of receiving
a sequence of two lower level sensor events, the first event
from the ultrasonic sensor and the second event from the touch
sensor. This way, we express that once the distance sensor
value goes below a certain threshold, and then a touch sensor
event occurs, it means that the robot has arrived the charging
station. On the right, we see a finite state controller that
generates from the exitArea controllable event a sequence
of events which rotate and accelerate the robot.

B. Controller Execution

We now describe how a dynamically updating controller is
executed. We define a simple data structure for the controller
consisting of a set of states connected with controllable,
uncontrollable, or update transitions. Controllable transitions
are associated with a specification event that is then translated
to events of actuators. Uncontrollable transitions are associated
with a specification event that is the result of the translation



from concrete events of sensors. Updatable transitions are ε-
transitions that are not associated with any event.

The controller is executed by the executor thread following
the pseudo-code shown in Algorithm 1.

Algorithm 1 Controller Execution
currentState = initialState;
while (true) do

if isUpdatable(currentState) then
updatableTransition =

currentState.getUpdatableTransition();
currentState = updatableTransition.getTargetState();

else if hasControllableTransition(currentState) then
transition = currentState.getContrTransition().any();
executeSpecificationEvent(transition.getEvent());
currentState = transition.getTargetState();

else
while (true) do

envEvent = waitForSpecificationEvent();
uncontrTransitions =

currentState.getUncontrollableTransitions();
if uncontrTransitions.contains(envEvent) then

currentState = uncontrTransitions.
get(envEvent).getTargetState();

break;
end if

end while
end if

end while

At the beginning, the current state of the controller is
set to the initial state. If the current state is updatable, the
corresponding update transition is followed, otherwise the
executor checks whether a controllable transition is defined. If
this is the case, the specification controllable event associated
with such transition is executed (i.e. translated to executable
concrete events). If no controllable transitions are defined, then
the controller waits for an uncontrollable specification event to
occur. Whenever an event is received, the executor checks if,
within the uncontrollable transitions of the current state, there
is one associated with the received event. If this is the case,
this transition is executed.

C. Deploying the dynamically updating controller

We now describe how the dynamically updating controller
can be deployed in the system to finally perform the update.
First, the dynamically updating controller is parsed to generate
a sequence of update commands. An update command can be
of the following types: (i) add a state to the current controller;
(ii) remove a state from the current controller; (iii) add a
transition to the current controller; (iv) remove a transition
from the current controller. The update commands identify a
state by a unique integer number; a transition is identified by
the sending and receiving state as well as the labeling event.

The parsing procedure creates and deletes elements in the
order shown in Fig. 6. First (a), it checks the presence of an

old controller to decommission and generates the sequence of
corresponding remove-transition and remove-state commands.
Then (b) it generates the sequence of add-state and add-
transition commands related to the controller implementing
the new specification. Finally (c) it generates the sequence
of add-transition commands for the update transitions, and
remove-transition commands for the outgoing transitions in
the current controller that are not used anymore. In all cases,
transition removal must occur before state removal, in order
to avoid dangling references, and state creation must occur
before transition creation. Due to limited computational power
of the robot system, breaking down the newly synthesized
dynamically updating controller into a sequence of update
commands is delegated to a remote machine.

As a second step, the generated sequence of update com-
mands sent from the remote machine is executed in the system.
This step is managed by the deployer thread. The deployer
thread is responsible for performing the corresponding mod-
ifications in the controller data structure. Such modifications
are performed at run-time, while the system is running, that is,
while the executor thread is executing the current controller.

To enable concurrent access to the controller data struc-
ture, each state of the controller is associated with a binary
semaphore that guarantees mutual exclusion. Whenever enter-
ing a state, the executor thread must acquire the semaphore
associated with that state before entering it, and it will not
release the semaphore until it will exit that state. Whenever
the deployer thread is required to perform some operation on
an existing state, including adding or removing outgoing tran-
sitions, it first needs to acquire the corresponding semaphore
before doing any operation on it. This state-level locking
mechanism, allows the deployer thread to execute any update
command to all states of the controller except on the current
state, that is locked by the executor. When an update operation
is required on the current state, the deployer thread will wait
until the executor thread exits the state, and then perform the
required operation.

The Lego NXT brick natively supports communication
with a remote machine via USB and Bluetooth. We use the
latter to send update command to the robot. To simplify the
development of the communication system, all the previously
described data structures and update commands are developed
supporting their serialization and deserialization over a data
stream. In this way, the machine preparing the update can
build the structures that are needed, serialize them and send
them over the data stream. The deployer thread on the robot
can then easily deserialize and perform the updates.

IV. RELATED WORK

The problem of dynamically updating a software system has
been addressed in the past and different approaches have been
proposed in the area of programming languages [5], [6], [7],
[8], and distributed reactive systems [9], [10], [11], [12].

In the area of programming languages, different tech-
niques have been proposed for dynamically updating language-
specific constructs such as variables, objects and functions



both for Java applications [5], [6] and for C programs [7], [8].
Our constructive approach to execute dynamically updating
controllers, even if implemented on top of a JVM, is general
enough to be applied to systems implemented in different
programming languages and execution environments.

An important theoretical result is provided in the work by
Gupta et al. [13]. They defined that an update of a program
is valid if the current run-time state of the old program is
also a reachable state of the new program. Our notion of
updatable state is similar, but we consider the states of different
finite state machines and system specifications. Moreover we
provided an automatic technique for identifying such states
and to finally execute the dynamic update.

Other approaches proposed different criteria for dynamically
reconfigure a distributed systems by replacing at run-time
some of their components [9], [10], [11]. These approaches
require the system to be in a state where no interactions
are currently in place. The same is true for early approaches
for dynamically updating only the procedures affected by the
changes [14], [15]. Our approach instead allows the update to
be performed in a wider set of states (e.g. in all the updatable
states) and the performed update will occur more timely.

Research on dynamic software updates is also related to the
area of self-adaptive systems. Different approaches have been
proposed to modeling, verifying, and execute the dynamic
evolution of an adaptive software [16], [17], [18], [19]. Zhang
et al. propose a formalism for modeling and verifying adap-
tive software which requires the manual definition of update
points [16]. In our approach, instead, the update points are
automatically identified. Adler et al., propose a framework
for developing dynamically adaptive embedded systems [17],
Bouveret et al., describe a categorical framework to ensure
correct software evolutions [18]. Iftikhar and Weyns proposed
an interesting approach, called ActiveFORMS, where models
of self-adaptive systems are directly executed to perform adap-
tation [19]. Differently from our approach, in ActiveFORMS
dynamic adaptation is obtained by replacing the current model
with the new one only when the system is in a quiescence
status. This may lead to less timely updates than the one
provided by our approach.

V. CONCLUSION

In this paper we describe a systematic approach for exe-
cuting dynamically updating controllers that are automatically
synthesized from the changes in MSD specification of a
system. We implemented a prototype of the approach on top of
a Java Virtual Machine for the Lego Mindstorms robot system.
This approach, together with the work we presented earlier,
is a further step to our vision of having a fully automated
framework for designing and executing dynamically updating
systems. The engineer has only to focus on providing the
MSD specification of the system and of its changes, that
will be automatically synthesized in a dynamically updating
controllers, deployed, and finally executed.

We applied the approach on a simple robot system. The
initial prototype we implemented was useful to have initial

insights on the applicability of the approach. Our future work
will first focus on further evaluation of the approach on more
complex systems. We will also consider on how to synthesize
a set of distributed dynamic updating controllers for different
system components and how to extend the approach for the
design and execution of self-adaptive systems.
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