
Synthesizing Tests for Combinatorial Coverage of
Modal Scenario Specifications

Valerio Panzica La Manna
MIT Media Lab

Cambridge, MA, USA
Email: vpanzica@mit.edu

Itai Segall
Bell Labs Israel
Alcatel-Lucent

Email: itai.segall@alcatel-lucent.com

Joel Greenyer
Software Engineering Group,
Leibniz Universität Hannover

Welfengarten 1 30167 Hannover, Germany
Email: greenyer@inf.uni-hannover.de

Abstract—Software-intensive systems often consist of many
components that interact to fulfill complex functionality. Testing
these systems is vital, preferably by a minimal set of tests that
covers all relevant cases. The behavior is typically specified by
scenarios that describe what the system may, must, or must
not do. When designing tests, as in the design of the system
itself, the challenge is to consider interactions of scenarios. When
doing this manually, critical interactions are easily overlooked.
Inspired by Combinatorial Test Design, which exploits that bugs
are typically found by regarding the interaction of a small set of
parameters, we propose a new test coverage criterion based on
scenario interactions. Furthermore, we present a novel technique
for automatically synthesizing from Modal Sequence Diagram
specifications a minimal set of tests that ensures a maximal
coverage of possible t-wise scenario interactions. The technique is
evaluated on an example specification from an industrial project.

I. INTRODUCTION

In many application domains, from embedded systems to
distributed information systems, we find systems that consist
of multiple interacting software components that must fulfill
complex functionality in reaction to external events. To elicit
and specify the system behavior, most design methodologies
are based on use cases and scenarios in order to describe how
the system may, must, or must not react in certain situations.

From a scenario-based specification, a system must be im-
plemented that satisfies all the previously specified scenarios.
This is especially difficult if multiple scenarios can occur at
the same time and then interact, i.e., imply restrictions upon
each other. This can happen for example due to concurrent user
requests or concurrent processes in the physical environment.
When designing tests, it is therefore crucial to cover especially
cases where scenarios interact. At the same time, there should
not be too many tests in order to avoid an unnecessary cost
and time overhead, especially if tests are executed manually.

To address this problem, we propose a new technique to
synthesize a test suite, i.e., a set of tests, from a scenario-
based system specification. Novel in our technique is, first,
our definition of a scenario-based coverage criterion as a
measure of quality of the produced tests. The criterion is
motivated by Combinatorial Test Design (CTD) [24], which
exploits that a software bug is typically found by forcing, in
the tests, the interaction of a small set of parameters [5], [23],
[15]. We transfer this idea to scenario-based specifications and
define a measure of how many of the possible pairwise (or t-
wise) concurrent activations of possibly interacting scenarios

are forced by a test suite. Second, we present a new game-
based approach for synthesizing a test suite from a scenario
specification. The resulting test suite guarantees reaching a
full pairwise (or t-wise) test coverage while at the same time
ensuring a minimal number of tests.

We propose to model scenarios using Modal Sequence
Diagrams (MSDs), a formal interpretation of UML sequence
diagrams [12] based on the concepts of Live Sequence Charts
(LSCs) [6], [13]. MSDs allow engineers to visually specify
interaction behavior that may, must, or must not happen
among system and environment components. This formalism
is particularly suited for our purpose for two reasons. First, it
allows engineers to intuitively, yet formally, design scenarios
that specify safety properties (“something bad must not hap-
pen”) as well as liveness properties (“something good must
eventually happen”). Second, the MSDs semantics defines the
independent activation and progress of scenarios, which natu-
rally reflects how multiple use cases can occur concurrently.

Test suites are synthesized from these specifications in-
tuitively as follows. We view the interaction of the system
and its environment as a two-player game. We explore if the
environment, i.e., eventually the tester or test software, will
be able to interact with the system in such a way that con-
current activations of MSDs will take place where the active
MSDs share at least one common object. It may be that an
MSD specification contains non-determinism, and for example
allows the reactions of the system to occur in different orders
or allows it to take different actions. Depending on the choice
made by the system (usually the non-determinism is resolved
in the final implementation), events in the environment, in
turn, may have to be selected differently to force a certain
concurrent activation of MSDs. Our technique is able to deal
with this non-determinism. As a result, a test synthesized by
our technique is not only a sequence of environment and
system events—instead a test is a strategy that may at some
points provide for different possible system reactions and, in
turn, prescribes different subsequent environment events.

The approach was implemented as part of SCENARIO-
TOOLS, an Eclipse-based tool suite for the modeling and
analysis of MSD specifications [1], [11]. We evaluated our
approach on a specification taken from an industrial system.
Since the system is not yet implemented, we automatically
synthesized an implementation from the specification for eval-



uation. We use a simplified specification as a running example.
The paper is structured as follows. In Sect. II we describe

the preliminaries of MSDs and CTD. We then introduce our
coverage criterion in Sect. III. In Sect. IV we present our
test suite synthesis approach, and in Sect. V its evaluation.
In Sect. VI we present the related work and conclude in
Sect. VII.

II. BACKGROUND

In the following, we describe our running example and the
foundations of MSDs and CTD.

A. Example
We consider a server repair and maintenance system that

manages the runtime (or online) replacement and insertion
of nodes into a server. Especially, we consider the insertion
of a node, which is also called expansion of the server. For
this purpose, the maintenance system interacts with a system
administrator, in the following simply called the user, via a
console. Furthermore, the maintenance system has a verifica-
tion unit that must ensure that certain hardware components
are working correctly.

The online expansion operation consists of three main parts:
a pre-operation verification, the expansion operation, and post-
operation verification. In the pre-operation verification, the
system checks the status of its internal and external com-
ponents. In our example, three components are checked: the
network, the existing hardware, and the LED lights (which will
guide the user to the correct slot in which the node should
be inserted). At this stage, a failure in the network or the
hardware is considered a non-recoverable error, i.e., an error
which causes the operation to abort. A broken LED, on the
other hand, is a recoverable error, which is reported to the
user. The user is notified of recoverable errors and can decide
to abort or continue the operation.

After a successful pre-operation verification, the user is
instructed to physically insert the hardware node. Once the
node is inserted, another round of verification is performed.
The post-operation verification is similar to the pre-operation
verification. The difference here is only that a post-operation
network failure is considered a recoverable error. A working
network is essential to perform the expansion, but the inserted
node will work if a post-operation network error occurs and
can be fixed.

The example highlights the following issues. First, there
can be different overlappings of the scenarios. For example,
different combinations of failures can occur at the same time
and in different orders. Second, we consider a case in the
example where the specification contains a non-deterministic
choice. For brevity of the example, we consider a very simple
case in which the system shows the user either a continue
dialog or an OK/Cancel dialog in the event of a recoverable
error. Depending on the dialog implemented in the final
system, the user will have to react differently in order to
continue the test. In bigger specifications, the effect of the non-
determinism on the different subsequent environment events
can be more complicated.

Third, our example contains the case where the same
message (the network error being detected) causes a different
behavior when appearing at different points in the process.
This is often overlooked in manual test design that only
considers statically whether some events occur or not. For
example, a test architect may think of the case where the
network fails, but may fail to see that the same network failure
at different points in time should cause different behaviors, and
thus should be tested separately.

B. MSD Specifications

MSDs are a formal interpretation of UML sequence dia-
grams introduced by Harel and Maoz [12]. An MSD spec-
ification consists of a set of MSDs that specify the valid
interactions of components in a system. In this work, we focus
on universal MSDs, which describe properties that must be
satisfied by every execution of the system. Our technique can
be extended to also support existential MSDs.

In the following, we call the components more generally
objects. We consider open systems in which objects are
either controllable or uncontrollable. Controllable objects are
the (software) components under development; uncontrollable
objects are users or external components. In the following, we
call the set of uncontrollable objects environment; the set of
controllable ones we call the system.

Figure 1 shows part of the MSD specification for our server
repair and maintenance system. The object system is modeled
by a composite structure diagram (CSD) shown on the top
left. The communicating objects are represented by roles that
have a cloud-like shape if the object is uncontrollable and a
rectangular shape if the object is controllable.

The objects communicate by interchanging messages that
have a name and one sending and one receiving object. For
simplicity, we consider only synchronous messages where the
sending together with the receiving of a message is one event,
also called a message event. Our approach can, however,
be extended to also support asynchronous communication.
Messages sent from uncontrollable (resp. controllable) objects
are also uncontrollable events (resp. controllable events).

Like a role in the CSD, each lifeline in an MSD represents
an object. Messages in an MSD represent message events.
In universal MSDs, messages can have a temperature and
an execution kind. The temperature can be either cold or
hot; the execution kind can be either monitored or executed.
Hot message are red and cold messages are blue; Monitored
messages have a dashed arrow, and executed messages have a
solid arrow. For clarity, we also use the labels (h/c, m/e).

The temperature and execution kind encode safety resp.
liveness properties of events in a scenario. Intuitively, if
a scenario reaches an executed message, the corresponding
message must eventually occur. If the message is monitored,
this message may occur. Hot messages must not be violated,
which happens if a message event occurs that is expected only
at another point in the scenario. Cold messages can be violated,
and this violation will terminate the scenario.



RepairAndMaintananceSystem

sys:Sys

vu:VerifUnit

c:Consoleu:User

led:LED

hwn:HWNode

net:Net

cold
(can be violated)

hot
(must not be violated)

monitored
(may happen)

executed
(must happen)

c,m

c,e

h,m

h,e

uncontrollable (env.) object

Legend Composite Structure Diagram:

Legend MSD Message Semantics:

ReportRecoverableError

sys:Sys c:Console user:User

alt

recoverableError

OKCancelErr

continueErr
h,e

h,e

c,m

sys:Sys

startVerification

RecoverableErrorLED

vu:VerifUnit led:LED

errorStatus
recoverableError

checkStatus

c:Console

startOperation

recoverableError h,e
h,e

c,m

c,m
c,m

c,m

startOperation

sys:Sys

startVerification

StartVerification

c:Console vu:VerifUnituser:User

startOperation
h,e

h,e

c,m

hwn:HWNode

CheckHardware

vu:VerifUnit net:Netsys:Sys

checkStatus
startVerification

led:LED

checkStatus
checkStatus

h,e

h,e

h,e

c,m

vu:VerifUnit led:LED

statusOK

checkStatus

«EnvironmentAssumption»
CheckLEDStatus

alt

errorStatus

h,e

h,e

c,m

c:Console user:User

OKErr

OKCancelErr

«EnvironmentAssumption»
UserPressOKOrCancel

alt

cancelErr
h,e

h,e

c,m

IgnoreErrUnitOK

c:Console vu:VerifUnit sys:Sys

IgnoreErr
unitOK

h,e
c,m

IgnoreRecoverableError

user:User c:Console vu:VerifUnit

OKErr
IgnoreErr

h,e
c,m

communication relationship

controllable (system) object

Fig. 1. Part of the MSD specification of the runtime server management system

As an example, consider the MSD StartVerification shown
in Fig. 1. The first message in an MSD is always cold and
monitored. Here it says that the scenario starts when the user
tells the console to start the (expansion) operation. The next
message is executed, which means that next the console must
forward this request to the maintenance system. Likewise, the
system must subsequently order the verification unit to start the
verification. The hot temperature of the second message means
that the console must send the start operation message to the
system before the user starts another expansion operation and
before the system orders the start of the operation.

More precisely, the semantics of the message in a universal
MSD is as follows. A message event can be unified with a
message in the MSD if the event name equals the message
name and the sending and receiving objects of the message
event are represented by the sending and receiving lifelines
of the diagram message. When an event occurs that can be
unified with the first message of an MSD, an active copy of
that MSD is created, also called active MSD. We assume that
an MSD has only one first message. As further events occur
that can be unified with the subsequent messages in the MSD,
the active MSD progresses. This progress is captured by the
cut, which marks for every lifeline the occurred messages. If
the cut reaches the end of an active MSD, it terminates.

If the cut is in front of a message on its sending and
receiving lifelines, this message is enabled. If a hot message is
enabled, the cut is hot, otherwise the cut is cold. Similarly, if
an executed message is enabled, the cut is executed, otherwise
the cut is monitored. Figure 2 shows active copies of the MSDs
StartVerification and RecoverableErrorLED that are in a hot and
executed cut, resp. in a cold and monitored cut. The cuts are
represented by dashed horizontal lines in the diagram.

As shown in Fig. 2 there can be multiple active
MSDs at a time, which impose different requirements
on what must or must not occur next. The cut config-

sys:Sys

startVerification

RecoverableErrorLED

vu:VerifUnit led:LED

errorStatus
recoverableError

checkStatus

c:Console

startOperation

recoverableError h,e
h,e

c,m

c,m c,m

c,m

startOperation

sys:Sys

startVerification

StartVerification

c:Console vu:VerifUnituser:User

startOperation
h,e

h,e

c,m

h,e

c,m

Fig. 2. Concurrently active MSDs with different temperature and execution
kind of their cuts

uration illustrated in Fig. 2 occurs after the occurrence
of the message events user->c:startOperation and
c->sys:startOperation.

Continuing the explanation of the example, the MSD Recov-
erableErrorLED says that if after starting the verification and
checking the status of the LED component, this component
returns an error status, this must be reported as a recoverable
error to the user. The checking of the LED, the network, and
the server hardware must follow the start verification request
as described by MSD CheckHardware. The MSD ReportRe-
coverableError says that the error must be reported to the user
either by an OK/Cancel dialog or a continue dialog. If, in case
an OK/Cancel dialog is implemented by the system, the user
presses OK, the verification unit is told to ignore the error
(MSD IgnoreRecoverableError) and then tell the system that
the verification of the component was OK (IgnoreErrUnitOK).
The further MSDs of the example are omitted for brevity.

One general assumption, to keep the environment from
trivially violating the MSD specification, for example by
sending user->c:startOperation twice without allow-



ing the system to send c->sys:startOperation etc., is
that the system is always fast enough to execute any finite
number of steps before the next environment event occurs.
This assumption is also called the synchrony hypothesis or
synchrony assumption [12], [13].

In some applications, even further assumptions have to be
made about the environment of the system, otherwise it may
even be that no implementation for the specification exists.
In previous work, we proposed to model these assumptions
explicitly by also using MSD, which we then call assumption
MSDs [10]. Figure 1 shows for example the assumption MSD
RecoverableErrorLED that describes the assumption that the
LED component, if requested to check the status of the LEDs,
will eventually reply with an OK status or an error status.
Similarly, the assumption UserPressOKOrCancel describes the
assumption that the user, if presented with an OK/Cancel
dialog for an error, will eventually choose OK or Cancel.

C. Game Graphs

Our test synthesis technique relies on exploring different
sequences of uncontrollable and controllable events that lead
to different combinations of active MSDs. We do this by
building a game graph, which is essentially a labeled transition
system where transitions are labeled with message events and
where states represent different reachable configurations of
active MSDs and their cuts. As events are controllable and
uncontrollable, we also call the respectively labeled transitions
controllable and uncontrollable. The initial state corresponds
to a state where no copy of any active MSD was created.

Definition 1 (Game Graph): A game graph is a tuple G =
(Q,Σ, T, q0) where Q is a finite set of states and q0 the initial
state. Σ is a finite set of message events. T ⊆ Q × Σ × Q
is a transition relation. Σu and Σc with Σ = Σu ∪ Σc and
Σu∩Σc = ∅ are the uncontrollable resp. controllable message
events. Tu = T \Q×Σc×Q are the uncontrollable transitions;
Tc = T \ Tu are the controllable transitions.

In Sect. IV, we describe an algorithm that explores the
game graph of an MSD specification, called specification game
graph in the following, in order to find test strategies. Test
strategies are also represented as game graphs and they can
be extracted from the specification game graph.

Due to the synchrony hypothesis mentioned earlier, we will
regard only game graphs where states have either controllable
or uncontrollable outgoing transitions. We call a state a con-
trollable state or system state if it has only outgoing con-
trollable transitions and we call a state a uncontrollable state
or environment state if it has only outgoing uncontrollable
transitions.

D. Combinatorial Test Design

Combinatorial Test Design (CTD), a.k.a. combinatorial test-
ing, is an effective test planning technique aimed at exercising
interactions between parameters. In CTD, the test space is
manually modeled by a set of parameters, their respective
values, and restrictions on the value combinations, a.k.a. a
combinatorial model. A valid test in the test space is defined

to be an assignment of one value to each parameter without
violating restrictions. A subset of the space is automatically
constructed so that it covers all valid value combinations (a.k.a.
interactions) of every t parameters, where t is usually a user
input. The most common application of CTD is known as
pairwise testing, in which the interaction of every pair of
parameters must be covered (i.e. t=2). Each test in the result
of CTD represents a high level test, or a test scenario, that
needs to be translated to a concrete executable test.

The reasoning behind CTD is the observation that in most
cases, the appearance of a bug depends on the interaction
between a small number of features, or parameters, of the
system under test. Experiments show that a test set that covers
all possible pairs of parameter values can typically detect 50%
to 75% of the bugs in a program [5], [23]. Other experimental
work has shown that typically 100% of bugs can be revealed
by covering the interaction of between 4 to 6 parameters [15].

III. MSD-BASED TESTING

Traditional testing techniques require the test architect to
manually design a test plan on the basis of requirements and
design documents that informally describe the functionality of
the system under test. The lack of a formal specification may
result in an ineffective or incomplete test suite.

In this section we describe how MSD-based testing simpli-
fies the process of designing a test plan. We then provide
the definition of test strategies, the result of our synthesis
technique. Finally, we introduce the coverage criterion based
on the MSD specification as a measure of the quality of the
produced test suite.

A. Specifying Goal States

The process of designing a test plan traditionally requires
the engineer to manually generate, from an informal specifica-
tion, relevant test cases for specific functionality of the system.
The manual generation of tests requires the identification of
specific sequences of events that can occur in the environment
and the corresponding system reaction. This process is chal-
lenging for conventional desktop applications and can be very
difficult for complex reactive systems.

When designing a test plan, it is important to decide when
a test should end. One can argue that a test ends if all
scenarios are terminated. However, there may be systems
where some scenarios never terminate; our production cell
example, mentioned in Sect. V, is such an example. In our
industrial example, we discovered that test engineers typically
want to define specific end-conditions for tests.

Therefore, we require a way to define appropriate end-
points for tests. End-points can be characterized in many ways,
including certain diagrams being active, specific cuts in certain
diagrams achieved, a parameter being set to a specific value,
etc. We call states of a system that satisfy this end-point
condition goal states.

We choose to adopt the former, and introduce goal dia-
grams. Given a set of diagrams marked as goal diagrams, a
state is a goal state if a goal diagram is in the last cut. Testers



Goal-ReportOpComplete

sys:Sys c:Console user:User

c,m opComplete
h,e

opComplete

Goal-NonRecError

sys:Sys c:Console user:User

c,m
nonRecError

h,e

nonRecError

vu:VerifUnit

nonRecError
h,e

Fig. 3. Goal Diagrams of the example

can select certain MSDs in the specification as goal diagrams
or add new MSDs as goal diagrams that, when reaching the
end, mark a desired end point of a test.

Figure 3 shows the goal diagrams of our running example.
The diagram Goal-ReportOpComplete describes the end-point
of the successful completion of a runtime maintenance oper-
ation and Goal-NonRecError represents the scenario in which
the system notifies the user of a non-recoverable error.

There may be cases where test engineers do not specify
any specific end points for a test. Also in these cases we
need to know when a test should end, and hence we also
need a generic notion of goal states. Since our test strategy
synthesis is based on the specification game graph, tests should
not unnecessarily traverse cycles in this graph. From the
perspective of the specification, this would not cover any new
behavior. Therefore, we define goal states generically, if no
goal diagrams are defined, as the leaf nodes of a spanning
tree of the specification game graph. This spanning tree can
be determined by a depth- or breadth-first-search.

B. Test Strategy

MSD-based specifications, as also other specifications, are
typically under-specified, which means that they do not deter-
ministically specify the system’s behavior in every possible sit-
uation. In MSD specifications, non-determinism often occurs
because concurrently active MSDs can progress in different
orders. A specification-based test generation technique must
therefore take this non-determinism into account.

This gives rise to the notion of test strategies. The non-
determinism may be resolved differently in the final implemen-
tation. Therefore, the tests generated from the specification are
not only sequences of environment and system events. Instead
a test is a strategy that, after some sequence of events, may
provide for different reactions of a system that again require
a specific subsequent environment event. A test strategy is a
game graph in which the tester (or the test engine) plays the
role of the environment against any system implementing the
MSD specification. For our purposes, we require strategies to
only prescribe deterministic choices for the environment. This
means that a tester that plays the role of environment during
a test should never have to make a non-deterministic choice.
Finally, test strategies should ensure reaching a goal state.

omitted 
part

s0

Goal state

startOperation [user→ c]

Sys. event

Env. event

opComplete 
[console→ usr]

s0

checkStatus [vu→ led]

errorStatus [led→ vu]

okCancel [c→ user]

recError [vu→ c]

continue [c→ user]

ok[user→ c] continue[user→ c]

ignoreRecErr [c→ vu] ignoreRecErr [c→ vu]

Legend

Fig. 4. Test Strategy

Definition 2 (Test Strategy): A test strategy for a specifica-
tion S is a game graph in which each state has at most one
outgoing transition labeled with an environment event, and that
for each correct system implementing S, reaches a goal state.

Figure 4 shows one test strategy1 generated by our technique
from the MSD specification of the example. The test strategy
has one goal state associated to the goal diagram Goal-
ReportOpComplete, which describes the scenario in which the
user is notified of the successful completion of the mainte-
nance operation. The example shown in the figure contains
only one goal state. However, in general, a test strategy may
contain multiple goal states.

Transitions drawn as dashed lines represent instructions for
the tester while the solid lines represent moves of the system.
States with outgoing transitions labeled with environment
events indicate a turn of the tester, i.e., a point in which
the tester has to send the associated environment event to the
system. States with outgoing transitions labeled with system
events represent a turn of the system. Since the specification is
non-deterministic it is allowed for these states to have multiple
outgoing transitions. A test strategy will drive the test to its
goals for every possible system that satisfies the specification.

C. Coverage Criterion

We now propose an MSD-based coverage criterion for test
strategies. As with most coverage criteria, the criterion may
be used for two purposes: a) given a test suite, minimize it

1due to space limit, we omitted some parts of the test strategy and show
only the ones that help illustrating Def. 2.



by selecting a small subset that maintains the same overall
coverage as the given set, and b) for evaluating the expected
effectiveness of a given test suite, or a given set of test
executions. In this work we focus on the former.

Given an MSD specification of a system, we propose a
coverage criterion for a set of test strategies which is based
on coverage of its diagrams and their interactions. We adopt
the motivation behind CTD [5], [23], [15], which states that
defects in a system are commonly caused by the interaction of
a small number of elements. In our case, the elements to reason
about are active MSDs. We therefore propose the t-wise active
diagrams coverage criterion. Intuitively, in this criterion, every
tuple of up to t diagrams should be active concurrently during
the run, if at all possible, where t is a user-specified number.

In the following we formalize the definition of this coverage
criterion. Intuitively, we start by defining a tuple of diagrams
as valid if one can reach a state in which all diagrams in it
are active. We then define that a test strategy covers a tuple
of diagrams if a state in which all diagrams in the tuple are
active will be visited by this test strategy. Finally, we define
the coverage achieved by a set of test strategies as the number
of covered diagram tuples (up to a given size t), out of all valid
diagram tuples (up to the same size t). One achieves full t-
wise coverage by introducing a set of test strategies that forces
every valid set of diagrams up to a size of t to be covered,
i.e., forces the system to reach a state in which they are all
active concurrently.

Definition 3 (Valid Diagram Tuple): A tuple of diagrams,
D, is called valid if there exists a path in the specification
game graph that reaches a state in which all diagrams in D
are active.

Definition 4 (Coverage of a Diagram Tuple): A diagram
tuple D is covered by a test strategy if every path in the
strategy from the initial state to a goal state contains at least
one state in which all diagrams in D are active. Furthermore,
we say that a set S of diagram tuples is covered by a set of
test strategies if for every D in S there exists a test strategy
in the set that covers D.

Definition 5 (t-wise Active Diagrams Coverage): Given a
set of test strategies, their t-wise active diagrams coverage is
the number of tuples of size up to t that are covered by the
set of strategies divided by the set of all valid tuples of size
up to t.

For example, consider the diagrams depicted in Figure 1,
and described in Section II-B above. Any test strategy for
this system that starts with the message startOperation
guarantees coverage of the pair of diagrams given in Figure 2
since both are activated by the startOperation message.
The diagram Goal-ReportOpComplete in Figure 3 (and sim-
ilarly any pair of diagrams containing it) is not covered by
a test strategy in which an error is detected in the pre-op
verification stage since the opComplete message is never
reached in such cases. The pair of diagrams in Figure 3 is
an invalid pair—in no strategy can a non-recoverable error
happen concurrently with the successful completion of the
maintenance operation.

IV. APPROACH

In this section we describe our approach for synthesizing a
minimal set of test strategies from an MSD specification that
has maximal t-wise Active Coverage criterion for a given t.

The approach consists of the following steps: (i) given as
input the MSD specification and a set of goal diagrams, we
explore the game graph of the MSD specification and as a
result synthesize a Global Test Strategy Graph (GTSG), which
contains all tests strategies; (ii) we leverage the information
of active MSDs associated to states of the GTSG to compute
for each strategy contained in the GTSG the set of covered
diagram tuples; (iii) we compute a minimized set of test strate-
gies contained in the GTSG that satisfies the t-wise coverage
criterion by applying a well-known greedy test minimization
algorithm; (iv) for each test contained in the minimized set,
we finally extract from the GTSG the concrete, separate test
strategies. From these test strategies, (v) for example test plan
documents or code for automated tests can be generated, or
the test strategies can be simulated to guide the tester through
tests interactively. These features, however, are not the focus
of this paper.

A. Global Test Strategy Graph Synthesis

In order to find a minimal set of test strategies for an MSD
specification with maximal t-wise active diagram coverage, we
must first compute all test strategies. Furthermore, we must
compute all valid tuples, in order to determine the maximal
coverage guaranteed by all test strategies, which is also the
coverage that should still be guaranteed by the minimized set
of test strategies. A naı̈ve approach would compute the set of
all valid tuples while extracting each test strategy separately.
However, all the valid tuples and all the test strategies can
be discovered by a single exploration of the specification
game graph. In the following, we explain our algorithm for
this exploration. Given a set of goal diagrams, the algorithm
synthesizes a game graph, called the Global Test Strategy
Graph (GTSG), which contains all the valid tuples and all
the test strategies reaching the given goals.

Our exploration and synthesis algorithm is based on the on-
the-fly algorithm for solving reachability games proposed by
Cassez et al. [4] (see also David et al. [7]). The algorithm was
also adopted by Greenyer et al. for synthesizing controllers
from MSD specifications [11].

The problem of synthesizing the GTSG can be viewed as the
problem of finding winning strategies in a two-player reach-
ability game, played by the environment against the system.
In our context, the tester takes the role of the environment.
We assume that the tester can control all the events that are
uncontrollable by the system. The environment wins the game
if the environment can guarantee, by selecting uncontrollable
events in the right way, to reach a goal state, while the system
tries everything (by selecting controllable events) to prevent
the environment doing so. If the environment wins, it means
that there exists at least one test strategy. The algorithm then
continues the exploration of the state space until it finds all
the possible test strategies.



The algorithm performs a depth-first, forward exploration
of the game graph. When it finds a goal state, this state is
marked as winning. A state is identified as a goal state if in
that state, one of the given goal diagrams is in a terminal cut.
If no goal diagrams are specified (cf. Sect. III-A), goal states
are states that have no unvisited successors.

Whenever the algorithm finds a goal or winning state,
it performs a backward re-evaluation of the winning status
of predecessor states. In our context, a state is winning if
either it is a goal state, or all outgoing controllable (i.e.,
system-controllable) transitions from it lead to winning states,
or at least one outgoing uncontrollable (i.e., environment-
controllable) transition from it leads to a winning state. The
backward re-evaluation continues along the chains of prede-
cessors until the initial state has also been re-evaluated. If the
initial state is a winning state, test strategies can be extracted
from the specification state graph. The set of winning states
induces the GTSG, i.e., the GTSG can be extracted from the
explored specification game graph by removing from it non-
winning states and also removing the transitions to/from non-
winning states.

B. Collecting Strategies and their Coverage

A GTSG encompasses test strategies that differ in the
environment choices taken from each state in the graph,
and they also differ in their coverage. We therefore require
to identify the different test strategies in a GTSG, and the
coverage guaranteed by each. Explicit extraction of each of
the test strategies, however, entails a large memory overhead.
Therefore, we symbolically annotate in the GTSG the different
strategies contained in it and calculate and compare their
prospective coverage.

This is performed in a backward propagation manner:
starting from the goal states and moving backward towards the
root, we identify for each state the different sub-strategies for
the environment to reach a goal state from this state. In a state
there are multiple sub-strategies if it has multiple outgoing
transition labeled with an environment event.

In this backward propagation, we label a state, per sub-
strategy that starts from that state, with a set of valid tuples
of active MSDs that this sub-strategy can guarantee to cover.
Thus, a state is annotated by a set of set of tuples—which
set of tuples corresponds to which sub-strategy is implied by
the GTSG and the (previously created) labels of the successor
states.

At the end of this process, the root will be labeled with
several sets of tuples. Each set represents the tuples that are
guaranteed to be covered by one test strategy. The single
test strategies can be identified by these tuples, but later
have to be extracted into an explicit strategy description. This
requires another forward exploration in the GTSC, which will
be described in Sect. IV-D. However, since a set of tuples
that is contained in the label of a state represents a test (for
the initial state of the GTSC) or a partial test (for the other
non-initial states of the GTSC), we refer to such a tuple as an
abstract test.

Definition 6 (Abstract Test): An abstract test in a state s
is the set of diagram tuples for which a strategy exists that
guarantees covering the diagram tuple starting from s.

For a given state s, we denote by As the set of all abstract
tests in it. We now present an algorithm for computing As for
all states in the test strategy. The algorithm proceeds from the
goal states backward towards the initial state, and applies in
each state the following rules.

Given a state s, we denote by AT (s) all the diagram tuples
(up to size t) that are active in state s, i.e., the coverage
targets covered in state s. The set As is: (i) If s is a goal
state, then As contains exactly one element, consisting of
the set AT (s). (ii) If s is an environment state (a state
from which outgoing edges are environment events), then
let s1, . . . , sk be the states reachable by a single transition
from s, and As1 , . . . , Ask be the respective sets of abstract
tests. As = {AT (s) ∪ t|∃i.t ∈ Asi}. In words, for each
abstract test in a “child” of s, there exists an abstract test
in s consisting of the tuples in the abstract test of the child,
as well as all the tuples active in s. (iii) If s is a system state
(a state from which outgoing edges are system events), then
let s1, . . . , sk be the states reachable by a single transition
from s, and As1 , . . . , Ask be the respective sets of abstract
tests. As = {AT (s) ∪ (t1 ∩ t2 ∩ · · · ∩ tk)|t1 ∈ As1 ∧ t2 ∈
As2 ∧ · · · ∧ tk ∈ Ask}. In words, a test strategy from s would
consist of a test strategy from each of its children (because
we don’t know in advance what the system will choose to do
from s). Therefore, we take the tuples common to all of its
children (those are the ones that can be guaranteed for every
system), and then add the tuples covered “locally” in s.

At the end of the process, each abstract test in the initial
state captures exactly the set of diagram tuples (up to size t)
that a tester can guarantee to cover in a single test strategy.
Note that this coverage is guaranteed for any system imple-
menting the specification.

This algorithm constructs abstract tests for all possible test
strategies from each state. It is often the case that two test
strategies are equivalent in the sense that they guarantee the
exact same coverage (i.e., their abstract tests are equal). In such
cases, one can remove the duplicate abstract tests and retain
only one copy of them. This way, equivalent test strategies (in
terms of their guaranteed coverage) are identified early in the
process, and significant performance improvement is gained.

C. Minimization

In test suite minimization, one minimizes a test suite to a
subset of tests that maintains the same coverage for a certain
coverage criterion. We adopt this notion, and minimize our
test suite (which is in fact a suite of test strategies) based on
the t-wise active diagram coverage criterion.

Test suite minimization algorithms [25] typically consider
as an input a table, in which a row corresponds to a test, and
columns correspond to coverage targets. A value 1 in a cell
represents that this test covers this target, and 0 that it does
not. In our case, each column represents a valid diagram tuple
of size up to t, and each row represents a test strategy. A value



of 1 in the table captures that the strategy guarantees coverage
of the target. Existing test suite minimization algorithms [25]
can then be applied on this table, in order to minimize it
and choose a small subset of strategies without reducing the
guaranteed coverage.

One should note that 100% coverage is not guaranteed, even
without minimization. This is due to the previously discussed
non-determinism in the specification. Often this results in cases
where a certain tuple of diagrams is valid (i.e., there exists a
system and environment such that this tuple would be visited),
but not necessarily guaranteed for every system.

D. Test Strategy Extraction

As described in Section IV-B above, test strategies are
not explicitly collected in the traversal algorithm, but rather
only abstract representations thereof, in the shape of their
guaranteed coverage. However, when one comes to display
and use (e.g. execute) the test generation and minimization
results, the concrete test strategy is required.

We therefore also supply a method for extracting a concrete
test strategy, given an abstract test. The method traverses the
test strategy once again, top-down (i.e. from root to goals).
During the traversal, a list of required diagram tuples is
maintained. This list is initialized with the complete required
abstract test. In each state, the tuples covered by this state are
removed from the list, and traversal continues to its children.
For system states, all children are included in the extracted
strategy. For environment states, one child is chosen such that
it contains an abstract test that contains the required list.

Last, the concrete test strategies can be compiled into
executable test programs. We did not implement such a transla-
tion. Rather, for our evaluation, we implemented an interpreter
within SCENARIOTOOLS to execute the test strategies.

V. EVALUATION

To evaluate our approach, we considered three comprehen-
sive specifications of our server maintenance system example.
Each specification represents a separate supported operation.
The specifications consist of between 73 and 78 MSDs, out of
which 4 are goal diagrams: capturing a successful completion,
a recoverable error, a non-recoverable error, and a critical error.

While the system has not been implemented, the MSD spec-
ification is still derived from the existing English requirements
document of the real industrial system to be implemented.

For each specification, a test controller was generated,
containing around 400 candidate test strategies. By considering
the pairwise coverage of diagrams, this number is already
reduced to around 30 just by discarding test strategies that are
duplicates in the sense that they guarantee the same coverage
of pairs. By further applying the test suite minimization
technique, the final numbers of tests are between 15 and 18.

We first evaluate the effectiveness of the proposed coverage
criterion. Since the system is in its design stage and no im-
plementation is currently available, we consider a synthesized
correct implementation of the specification as a representative
of the “correct” implemented system.

Inspired by mutation testing [14], we generate faulty im-
plementations (i.e. mutants) by applying a combination of
two categories of mutation operators on the synthesized im-
plementation. The first type of faults simulates an incorrect
comprehension of the specification and consists of randomly
changing the events associated to transitions. The second type
of faults is obtained by randomly removing transitions from
the correct implementation, which simulates the possibility of
forgetting potentially critical hidden obligations in the speci-
fication. The procedure of generating a mutant takes as input
an injected faults rate, that is, the percentage of transitions,
over the number of transitions in the correct implementation,
that are modified by applying the mutation operators. This
rate determines how “faulty” the mutant is and simulates the
number of bugs that can be found in an implementation. A
mutant is then generated by randomly choosing a transition
and applying alternatingly one of the two mutation operators
until reaching the given injected faults rate. The random choice
of a transition follows a uniform distribution and does not
allow multiple mutations to be applied on the same transition.
Finally, we verify that the generated mutant is indeed an
incorrect implementation, that is, we check if it violates the
specification.

A naı̈ve approach for detecting all possible faults of a
mutant would be to execute all possible test strategies extracted
from the specification. However this is often impractical espe-
cially when the specification is large and when the execution of
each test is expensive since it requires the manual intervention
of an operator. This is the case of the server maintenance
system where the cost of executing a test is high and the
number of all generated test strategies is around 1200.

To evaluate the effectiveness of the approach against a
reduced number of tests we compare the tests generated by
it to a set of test strategies chosen randomly out of the Global
Test Strategy Graph. With this approach, the size of the set
of generated random tests is the same as the one provided
by our approach. Random test strategies are extracted by
uniformly choosing one transition for each system state that
is visited during a top-down traversal of the GTSG. Note
that the randomly chosen tests are already specification-based,
rather than being “purely random” ones. Nevertheless, we still
observe significant improvement in bug detection ability when
the tests are chosen based on the interaction coverage criterion
rather than randomly.

Table I shows the results of the experiments for the three
features of the system with three different values of parameter
t of the t-wise active diagram coverage criterion: pairwise,
three-wise, and four-wise. Each experiment has been executed
100 times, with different injected fault rates, and compares the
average percentage of failed tests obtained by our approach
with that obtained by the randomly chosen test-suite. A high
percentage means a better capability of discovering faults.
For a fair evaluation, the randomly chosen tests have the
same number of states as the tests generated by the different
coverage criteria.

As the table shows, our criterion generally outperforms a



TABLE I
TEST SUITE EFFECTIVENESS ON MUTATED IMPLEMENTATIONS, COMPARED AGAINST THAT OF RANDOMLY SELECTED TESTS

operation Injected Faults Random Test Suite PairWise Random Test Suite Three-Wise Random Test Suite Four-Wise
1% 0% 76% 0% 88% 0% 94%
5% 29% 88% 35% 88% 49% 94%

10% 41% 94% 49% 94% 61% 98%
1% 17% 56% 26% 89% 31% 89%
5% 100% 100% 100% 100% 100% 100%

10% 100% 100% 100% 100% 100% 100%
1% 0% 11% 14% 44% 19% 65%
5% 50% 94% 53% 94% 57% 94%

10% 100% 100% 100% 100% 100% 100%

Size of pair-wise Size of three-wise Size of four-wise

nodeAdd

nodeRepair

nodeUpgrade

TABLE II
RUN-TIME EVALUATION OF THE APPROACH

operation pairwise three-wise four-wise
nodeAdd 6339 ms 9503 ms 9267 ms
nodeRepair 6922 ms 9231 ms 10360 ms
nodeUpgrade 7048 ms 9232 ms 9184 ms

criterion in which a test is randomly generated. For example,
for the case of 1% injected faults on the nodeUpgrade specifi-
cation, the pairwise, three-wise and four-wise based test suites
achieve 11%, 44% and 65% effectiveness, respectively, while
the randomly chosen test suites of the same respective sizes
achieve only 0%, 14% and 19%. This demonstrates the added
value obtained by the wise interaction-based choice of tests.
Note the increase in the effectiveness as the level of interaction
grows, and the increase in the difference between our approach
and randomly chosen tests.

Another observation to be made from this table is the growth
in the added value as the percentage of faults drops. The cases
of low fault percentage, where the faults are more rare and thus
harder to detect are the ones in which the difference between
the effectiveness of our interaction-based approach and that of
the random choice is the most significant, and also the cases
where the impact of the level of interaction, t, is the highest.

We also conducted experiments to evaluate the execution
time for synthesizing test suites. We run the experiments on a
MacBook with a 2,26 Ghz Intel Core 2 Duo CPU, and with 8
GB of RAM. Table II shows the run time of the experiments
for the different specifications. We measure the total execution
time for three different t-wise coverage criteria. The measured
execution time for the pairwise coverage is around 7s and
between 9s and 10s for the three-wise and four-wise coverage.
The execution time of random tests is also around 7s. The
results shows that our approach is also efficient and scalable
in terms of performance, especially if compared to the time
required to manually derive the tests.

While these results are highly encouraging and promising,
a more thorough evaluation is still required—this is left as
future work at this point.

VI. RELATED WORK

Deriving test cases from specifications is not a new idea.
Several approaches exist that consider scenario-based speci-
fications as the basis for deriving tests [21], [16], [3], and
many approaches use scenarios as a means of specifying tests
themselves [9], [8], [19], [22], [20], [17].

However, our work is novel in three aspects. First, being
based on MSDs, our approach is based on a scenario specifi-
cation language that allows engineers to formally define safety
and liveness requirements and which precisely defines the
concurrent activation and progress of scenarios. Other scenario
specification languages often only support the specification
of possible scenarios [3], [16] or the interaction of scenarios
has to be specified explicitly [21]. Second, we define a new
coverage criterion for tests for the combinatorial coverage
of concurrent scenario activations, inspired by CTD. To the
best of our knowledge, this idea has not been investigated
before. Third, we propose an automated synthesis method for
generating test strategies, which can also deal with possible
non-determinism in early scenario-based specifications.

In the following we report on selected related approaches.
Cartaxo et al. [3] automatically generate tests from UML

sequence diagram specification. The specification is translated
into a labeled transition system from which tests are then
extracted by traversing all its paths. Their usage of UML se-
quence diagrams, as opposed to MSDs, limits the specications’
expressiveness and they present no coverage criterion.

Lee et al. [16] also consider generating tests from sequence
diagrams. Sequence diagrams are translated into a state ma-
chine representing changes in the system’s state variables.
Tests are then derived by requiring node coverage or edge
coverage (state tour and transition tour, resp.) of the global
state machine. This will create many tests, limiting the scala-
bility, as opposed to our approach, which tries to cover only
t-wise scenario coverage.

Similar to the previous approach, Briand et al. [2] generate
test cases from control flow graphs created from sequence
diagrams and state machines. However, when generating tests,
only one sequence diagram is considered at a time, thus
neglecting the concurrent occurrence of scenarios.

Nebut et al. [18] propose an approach where specifications
are given as use case descriptions. A transition system can be



derived from the use cases when steps are enriched by pre-
and post-conditions. From the resulting model, test cases can
be derived. Use case interactions are, however, not regarded
in the test coverage.

Many works consider different forms of scenarios as a
means to specify the tests themselves, rather than to specify
the behavior of the system [9], [8], [17]. For example, TESTOR
[19] is a system for generating test sequences from behavioral
models. A similar approach is taken by Pickin et al. [20],
where a system is modeled by UML class, state, and object
diagrams, and sequence diagrams are used as test objectives,
which guide the test generation algorithm.

VII. CONCLUSION

We propose a novel approach for the automatic generation
of test strategies based on an MSD specification with a new
test coverage criterion for measuring the amount of concurrent
scenario activations tested. The key idea of the criterion is
inspired by Combinatorial Test Design. Given an MSD speci-
fication, our synthesis technique can automatically synthesize
a minimal set of test strategies that exhibits a maximal t-wise
scenario interaction coverage.

The technique could be transferred to other scenario-based
specification approaches if they provide a formal semantics for
concurrent scenario activations, or also to LTL specifications
if they follow a scenario-based specification style.

We evaluated our approach with an example based on an
industrial specification. Our evaluation shows that our synthe-
sized test suites are more effective than randomly chosen tests.
The preliminary positive feedback received by our industrial
partner also suggest the effectiveness of our technique and its
applicability in a real context.

As current and future work we plan to evaluate the quality
of the produced test suite on the basis of real, human-
engineered system implementations. We plan also to extend
our technique by investigating and evaluating the effectiveness
of other coverage criteria based on MSDs. Moreover, we will
investigate how the t-wise coverage criterion can be adopted
for measuring the quality of existing test suites.

As future work, we also plan to target the scalability of
the approach. The size of the game graph is exponential in
the number of scenarios. Moreover, in some applications we
may have to consider message parameters with large value
ranges, where enumerating all values will be impractical. Here,
a symbolic interpretation of these parameter values in the game
graph could be a solution.

REFERENCES

[1] C. Brenner, J. Greenyer, and V. Panzica La Manna. The ScenarioTools
play-out of modal sequence diagram specifications with environment
assumptions. In Proc. 12th Intl. Workshop on Graph Transformation
and Visual Modeling Techniques (GT-VMT 2013). EASST, 2013.

[2] L. Briand, Y. Labiche, and Y. Liu. Combining UML sequence and
state machine diagrams for data-flow based integration testing. In Proc.
8th European Conference on Modelling Foundations and Applications,
ECMFA’12, pages 74–89, Berlin, Heidelberg, 2012. Springer-Verlag.

[3] E. Cartaxo, F. Neto, and P. Machado. Test case generation by means of
UML sequence diagrams and labeled transition systems. In Proc. Intl.
Conference on Systems, Man and Cybernetics, pages 1292–1297, 2007.

[4] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient
on-the-fly algorithms for the analysis of timed games. In M. Abadi and
L. de Alfaro, editors, CONCUR 2005 Concurrency Theory, volume
3653 of LNCS, pages 66–80. Springer Berlin Heidelberg, 2005.

[5] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-Based Testing in Practice. In
Proc. 21st International Conference on Software Engineering (ICSE’99),
pages 285–294. ACM, 1999.

[6] W. Damm and D. Harel. LSCs: Breathing life into message sequence
charts. In Formal Methods in System Design, volume 19, pages 45–80.
Kluwer Academic, 2001.

[7] A. David, G. Behrmann, P. Bulychev, J. Byg, T. Chatain, K. G. Larsen,
P. Pettersson, J. I. Rasmussen, J. Srba, W. Yi, K. Y. Joergensen,
D. Lime, M. Magnin, O. H. Roux, and L.-M. Traonouez. Tools for
model-checking timed systems. In O. H. Roux and C. Jard, editors,
Communicating Embedded Systems – Software and Design, pages 165–
225. ISTE Publishing / John Wiley, Oct. 2009.

[8] M. Ebner. Ttcn-3 test case generation from message sequence charts. In
Workshop on Integrated-reliability with Telecommunications and UML
Languages (ISSRE04:WITUL, 2004.

[9] F. Fraikin and T. Leonhardt. SeDiTeC – testing based on sequence
diagrams. In Proc. 17th IEEE Intl. conference on Automated software
engineering, ASE ’02, pages 261–266, Washington, DC, USA, 2002.
IEEE Computer Society.

[10] J. Greenyer. Scenario-based Design of Mechatronic Systems. PhD thesis,
University of Paderborn, 2011.

[11] J. Greenyer, C. Brenner, M. Cordy, P. Heymans, and E. Gressi. In-
crementally synthesizing controllers from scenario-based product line
specifications. In Proc. 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 433–443, New York, NY, USA,
2013. ACM.

[12] D. Harel and S. Maoz. Assert and negate revisited: Modal semantics
for UML sequence diagrams. Software and Systems Modeling (SoSyM),
7(2):237–252, May 2008.

[13] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer, August 2003.

[14] Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. Software Engineering, IEEE Transactions on,
37(5):649–678, Sept 2011.

[15] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software Fault Interactions
and Implications for Software Testing. IEEE Transactions on Software
Engineering, 30:418–421, 2004.

[16] N. H. Lee and S. D. Cha. Generating test sequences from a set of MSCs.
Comput. Netw., 42(3):405–417, June 2003.

[17] S. Maoz, J. Metsä, and M. Katara. Model-based testing using LSCs
and S2A. In A. Schürr and B. Selic, editors, Model Driven Engineering
Languages and Systems, volume 5795 of Lecture Notes in Computer
Science, pages 301–306. Springer Berlin Heidelberg, 2009.

[18] C. Nebut, F. Fleurey, Y. Le-Traon, and J.-M. Jezequel. Automatic test
generation: a use case driven approach. Software Engineering, IEEE
Transactions on, 32(3):140–155, 2006.

[19] P. Pelliccione, H. Muccini, A. Bucchiarone, and F. Facchini. TESTOR:
deriving test sequences from model-based specifications. In Proc. 8th
Intl. Conference on Component-Based Software Engineering, CBSE’05,
pages 267–282, Berlin, Heidelberg, 2005. Springer-Verlag.

[20] S. Pickin, C. Jard, T. Jeron, J.-M. Jezequel, and Y. Le Traon. Test
synthesis from UML models of distributed software. IEEE Trans. Softw.
Eng., 33(4):252–269, Apr. 2007.

[21] J. Ryser and M. Glinz. Using dependency charts to improve scenario-
based testing – management of inter-scenario relationships: Depicting
and managing dependencies between scenarios. In Proc. 17th Intl.
Conference on Testing Computer Software, TCS 2000, 2000.

[22] M. Satpathy, Q. Malik, and J. Lilius. Synthesis of scenario based
test cases from B models. In K. Havelund, M. Núñez, G. Rosu, and
B. Wolff, editors, Formal Approaches to Software Testing and Runtime
Verification, volume 4262 of Lecture Notes in Computer Science, pages
133–147. Springer Berlin Heidelberg, 2006.

[23] K. Tai and Y. Lie. A Test Generation Strategy for Pairwise Testing.
IEEE Transactions on Software Engineering, 28:109–111, 2002.

[24] K. Tatsumi. Test-Case Design Support System. In Proc. Intl. Conference
on Quality Control (ICQC), pages 615–620, 1987.

[25] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability,
22(2):67–120, 2012.


	Introduction
	Background
	Example
	MSD Specifications
	Game Graphs
	Combinatorial Test Design

	MSD-based Testing
	Specifying Goal States
	Test Strategy
	Coverage Criterion

	Approach
	Global Test Strategy Graph Synthesis
	Collecting Strategies and their Coverage
	Minimization
	Test Strategy Extraction

	Evaluation
	Related Work
	Conclusion
	References

