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Abstract. In many areas we �nd cyber-physical systems consisting of
multiple software-controlled components that communicate to control
complex physical processes. As customers demand increasingly rich func-
tionality, the component interactions become more and more complex.
We are developing a formal scenario-based method for specifying the
inter-component behavior that extends the concepts of Live Sequence
Charts. This method is intuitive, yet precise, and automated analysis
capabilities help engineers deal with the aforementioned complexity. In
particular, the execution via the play-out algorithm supports a simula-
tion of the behavior emerging from the interplay of the scenarios. Deriv-
ing a distributed implementation from an inter-component speci�cation,
however, is a challenging task. An alternative is the play-out of the speci-
�cation by the distributed system. In this paper, we present a distributed
play-out approach where the components coordinate via MQTT, a proto-
col used in IoT applications. We demonstrate the approach by a Car-to-X
example implemented on Raspberry Pi-based robots.
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1 Introduction

In many areas, for example, transportation, industry, and healthcare, we �nd
systems consisting of multiple embedded components that cooperate to control
complex physical processes and to interact with users. We also call these systems
cyber-physical systems. Today, these system ful�ll increasingly complex and criti-
cal functions, which makes their development challenging. One particular source
of complexity is the distributed and concurrent nature of the software: single
functions of the system are usually realized by the cooperation of several com-
ponents, and a single component must often ful�ll multiple functions at the same
time.
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In order to help engineers deal with this complexity, we are developing a for-
mal scenario-based method for specifying the interaction behavior of the com-
ponents on an inter-component level. This method extends the concepts of Live
Sequence Charts (LSCs) [5,11] and Modal Sequence Diagrams (MSDs) [10]. LSC-
s/MSDs are a visual formalism for specifying how a set of system components
may, must, or must not react to external events. We are introducing the Scenario
Design Language (SDL), which is a textual language based on LSCs/MSDs.

In particular, on this basis, the play-out algorithm [11] allows engineers to
execute and thereby simulate a scenario-based speci�cation. At design-time, this
algorithm helps understand the interplay of the scenarios.

Eventually however, the inter-component speci�cation must be transformed
into an intra-component implementation. Due to the reasons given above, this is a
challenging task. We are working on controller synthesis approaches for automat-
ing this transition [4] (also others [8,2,9]), but these techniques have limitations.
Foremost, these approaches assume a speci�cation for a static set of components.
But, for many cyber-physical systems, we must assume that they are dynamic,
i.e., there are many or even in�nitely many con�gurations of components that
may evolve at run-time�imagine a mobile system or communicating cars.

An alternative approach to arrive at a distributed implementation is dis-
tributing the play-out algorithm among the components. A naive realization of
this approach is to let every component execute a play-out of the complete sys-
tem with full synchronization of all components after each event, which is of
course ine�cient. Desirable would be to analyze the dependencies among the
scenarios and the components, and minimize the necessary synchronization.

In a student project, we realized the naive approach as a �rst step towards
a more elaborate solution. We implemented a distributed play-out where all
components synchronize via the MQTT, a publish/subscribe-based messaging
protocol used in Internet of Things (IoT) applications. We demonstrate the
approach by a Car-to-X example running on Raspberry Pi-based robots (Fig. 1).

The idea of distributing play-out is not new [1,13]; the particular novel contri-
bution of this paper is a distributed play-out that (1) supports dynamic systems
and dynamic bindings of scenarios to components in the system, and (2) is able
to incorporate sensor/actuator events from embedded components in the system.
Furthermore (3), we introduce our language SDL and a supporting tool [15].

Structure: in Sect. 2 we explain our example informally. SDL speci�cations
are explained in Sect 3. Our distributed implementation of the play-out we ex-
plain in Sect. 4. Finally, we discuss related work in Sect. 5 and conclude in Sect. 6.

2 Example

As an example, we consider the speci�cation of an advanced driver-assistance
system that relies on the communication of cars and the road infrastructure (also
more generally called Car-to-X- or Vehicle-to-X communication). Such systems
are envisioned to coordinate the tra�c more safely and e�ciently in the future.
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Fig. 1. Car-to-X example overview and photo of the demonstator

One use case that we consider is cars driving on a two-lane street that need
to pass road works that block one lane. If cars approach from both sides, the car
approaching on the blocked lane must stop. STOP and GO signals are shown
on the driver's dashboard. Figure 1 shows an example of a simple street system
with three cars and one construction site. We conceived the speci�cation for this
use case on the basis of descriptions of similar systems on the web1.

During requirements engineering and early design, the behavior of the system
in usually conceived in the form of scenarios. In one scenario, illustrated on the
left of Fig. 2, an engineer speci�es that (1) whenever a car approaches an obstacle
on the blocked lane, (2) either a STOP or GO signal must be shown to the driver
(3) before the car reaches the obstacle. In this scenario, the engineer does not
specify any condition for when STOP or GO must be shown.
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Fig. 2. Sketches of scenarios

In a second scenario, shown on the right of Fig. 2, the engineer speci�es that
(1) whenever a car approaches an obstacle on the blocked lane, (2) the car must
register at the construction control. The construction control (3) must then check

1 see for example the use case by the CAR 2 CAR Communication Consortium �Warn-
ing of Roadworks�: https://www.car-2-car.org/index.php?id=149
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whether the narrow passage is free, i.e., whether any car approaching from the
other side has already registered. If so, (4) the entering of the narrow passage
by the car approaching on the blocked lane must be disallowed, and it must be
allowed otherwise. Last, (5) depending on the decision, the STOP or GO symbol
must be shown to the user. Further scenarios would be described similarly.

The two scenarios above demonstrate that scenarios can overlap, i.e., they
describe common, but also di�erent aspects of the same situation. In the �nal
system, we expect that the behavior satis�es the requirements expressed by both
scenarios, that the scenarios are �woven together�.

3 Scenario Design Language Speci�cation

The Scenario Design Language (SDL) is a textual variant of LSCs [5,11] and
MSDs [10,3]. It allows us to specify, using scenarios, how a set of objects may,
must, or must not react to external events. Scenarios can be existential or uni-
versal. Existential scenarios describe sequences of message events that must be
possible to occur; universal scenarios describe properties that must hold for all
sequences of message events. Here we focus on universal scenarios only.

We created a textual variant of LSCs/MSDs, because, based on our experi-
ence with the graphical notation and modeling tools [3,7], we found a textual
notation more user friendly and easier to extend.

3.1 Object system and message events

An SDL speci�cation speci�es the message-based interaction behavior of objects
in an object model. The objects are either controllable or uncontrollable; the set
of uncontrollable objects is also called the environment ; the set of controllable
objects is also called the system.

The objects can interchange messages. A message has one sending and one
receiving object and refers to an operation of the receiving object's class. A
message is a system message if it is sent by a system object and it is an envi-

ronment message otherwise. Here we consider only synchronous messages where
the sending and receiving together is a single event, also called message event.
An in�nite sequence of message events is called an execution or run.

3.2 SDL speci�cation, collaborations, and scenarios

An example SDL speci�cation is shown in Listing 1. An SDL speci�cation has
a name (here �CarToX�) and refers to a domain package (line 3) that contains
a class model; the speci�cation then speci�es the behavior of instances of that
class model. In our example, the class model de�nes the classes Car, Lane, Con-
struction Control, etc.; we omit details for brevity. The speci�cation furthermore
de�nes that objects of certain classes are controllable or uncontrollable (line 5-7).

Next, an SDL speci�cation de�nes one or multiple collaborations, which, in
in the style of UML, de�nes collaborating elements, also called roles, and how



they collectively accomplish a desired functionality. Roles are typed by domain
classes and they represent objects in an object model that can be the sender
or receiver of messages. Roles can be dynamic or static. Dynamic roles can be
bound to di�erent objects in the object model upon the activation of scenarios.
Static roles are bound to one object. Here we only consider dynamic roles.

Each collaboration contains a set of scenarios. Each scenario refers to a set of
roles of its collaboration. A scenario essentially contains a sequence of messages,
but can also de�ne conditions, or alternative-, parallel -, and loop fragments. A
message in a scenario has the form 〈sender〉->〈receiver〉.〈operation〉,
where 〈sender〉 and 〈receiver〉 are roles and 〈operation〉 is an operation
of the receiving role's class. A message can have di�erent modalities: it can be
strict or non-strict and requested and non-requested.

We explain the semantics of the scenarios, messages, and the messages modal-
ities by de�ning the following concepts: (in the lines of [11])

(1) event uni�cation: A message event sent in the object model can be
uni�ed with a scenario message if the sending and receiving object of the message
event are the objects bound to the respective roles of the scenario message.

(2) scenario activation and dynamic role binding: A scenario is acti-

vated if a message event occurs that can be uni�ed with the �rst message in that
scenario. We also say that an active copy of the scenario is created. At the time
of activation, dynamic roles are unbound; in this case, a message event can be
uni�ed with a scenario message if the classes of the sending and receiving objects
of the message event are equal to or subclasses of the classes typing the send-
ing and receiving roles of the scenario message. Upon activation of the scenario,
the roles of the �rst message are bound to the sending and receiving objects of
the activating message event. Then the remaining roles are bound according to
binding expressions (see e.g. lines 33-36). A role binding is de�ned for an ac-
tive scenario, i.e., there can be multiple active copies of the same scenario with
di�erent role bindings, for example if di�erent cars approach di�erent obstacles.

(3) progress (enabled messages): In a scenario, messages can be enabled.
After the activation of a scenario, the message following the �rst message is
enabled. When a messages event occurs that can be uni�ed the enabled message,
then instead the next message becomes enabled. This way, enabled messages
indicate the progress of the active scenarios. There can also be multiple enabled
messages in an active scenario if for example it contains a parallel fragment.

(4) scenario termination: If a last message in an active scenario is enabled
and a message event occurs that can be uni�ed with that last message, then the
active scenario terminates and is discarded.

(5) violations: If a message event occurs that can be uni�ed with a message
in the scenario that is currently not enabled, we call this a violation of the
scenario. If currently a strict message is enabled, this is a safety violation, which is
forbidden to occur. If only non-strict messages are enabled, this is an interrupting

violation, which is allowed, but will lead to a premature termination of the active
scenario. If a requested message is enabled forever, because never any message
event occurs that progresses or interrupts the scenario, this is a liveness violation.



(6) accepting runs: A (universal) scenario accepts a run if it does not lead
to a safety violation or a liveness violation of the scenario. A speci�cation accepts
a run if all of its scenarios accept the run.

The scenarios DashboardOfCarApproachingOnBlockedLaneShowsStopOrGo

and ControlStationChecksForCarApproachingOnBlockedLaneEnteringAllowed

specify the scenarios introduced informally in Sect. 2.

1 system specification CarToX {
2
3 domain cartox //class model
4
5 define Car as controllable
6 define ObstacleControl as controllable
7 define Environment as uncontrollable
8 define Driver as uncontrollable
9 define Construction as uncontrollable

10
11 collaboration ApproachingObstacleOnBlockedLane {
12
13 dynamic role Environment env
14 dynamic role Driver driver
15 dynamic role Car car
16 dynamic role Construction construction
17 dynamic role Lane currentLane
18 dynamic role Lane nextLane
19 dynamic role ObstacleControl obstacleControl
20
21 specification scenario

DashboardOfCarApproachingOnBlockedLaneShowsStopOrGo
22 with dynamic bindings [
23 bind driver to car.driver
24 ] {
25 message env -> car.approachingObstacle()
26 alternative { message strict requested car -> driver.showGo()
27 } or { message strict requested car -> driver.showStop() }
28 message env -> car.obstacleReached()
29 }
30
31 specification scenario

ControlStationChecksForCarApproachingOnBlockedLaneEnteringAllowed
32 with dynamic bindings [
33 bind driver to car.driver
34 bind currentLane to car.currentLane
35 bind construction to currentLane.obstacle
36 bind obstacleControl to construction.obstacleControl
37 ] {
38 message env -> car.approachingObstacle()
39 message strict requested car -> obstacleControl.register()
40 alternative if [ obstacleControl.narrowAreaFree ] {
41 message strict requested obstacleControl -> car.driveAllowed()
42 message strict requested car -> driver.showGo()
43 } or if [ !obstacleControl.narrowAreaFree ] {
44 message strict requested obstacleControl -> car.driveForbidden()
45 message strict requested car -> driver.showStop()
46 }
47
48 assumption scenario ApproachingObstacleEventSequence
49 with dynamic bindings [
50 bind currentLane to car.currentLane
51 bind nextLane to currentLane.next
52 ] {
53 message env -> car.roadSectionEntered()
54 interrupt if [ nextLane.obstacle == null ]
55 message strict requested env -> car.approachingObstacle()
56 message strict requested env -> car.obstacleReached()



57 message strict requested env -> car.overtakingObstacle()
58 message strict requested env -> car.obstacleAreaLeft()
59 }
60
61 specification scenario CarEntersNextLane with dynamic bindings [
62 bind currentLane to car.currentLane
63 bind nextLane to currentLane.next
64 ] {
65 message env -> car.roadSectionEntered()
66 message strict requested car -> car.setCurrentLane(nextLane)
67 }
68 ... // further scenarios
69 } // end collaboration ApproachingObstacleOnBlockedLane
70 ... // further collaborations
71 }

Listing 1. Example SDL speci�cation

3.3 Assumption scenarios

We also support scenarios that allow us to specify what may, will, or will not hap-
pen in the environment. These scenarios we call assumption scenarios [6,3] as op-
posed to speci�cation scenarios that specify requirements for the software. In our
example, we assume that there are di�erent events that occur as a car approaches
and then reaches an obstacle, then overtakes the obstacle, and then �nally leaves
the narrow passage. The assumption scenario ApproachingObstacleEventSequence
(line 48) speci�es that once env -> car.roadSectionEntered() occurs,
the events described in the scenario will occur exactly in that order.

3.4 Dynamic object model and message side-e�ects

The objects in an object model can carry values for attributes and links to
other objects. These properties can be used to specify dynamic role bind-
ings or condition expressions. They can also change as a side-e�ect of mes-
sage events. By convention, message events that refer to operations of the form
set〈Property〉(value) set a property value of the receiving object.

The scenario CarEntersNextLane in Listing 1 for example describes that, when
a car enters a road section, it must also update its pointer to the current lane.

3.5 The play-out algorithm

The play-out algorithm [11] is an executable semantics for LSC/MSD, and also
SDL speci�cations, which we extended to also consider assumption scenarios [3].
Play-out takes as input an SDL speci�cation and a concrete object model that
is an instance of the domain class model speci�ed in the SDL speci�cation. In
a nutshell it works as follows: when an environment event occurs that activates
or progresses one or multiple speci�cation scenarios into a state where requested
system messages are enabled, then a corresponding system message event is
selected an executed, provided that it does not lead to a safety violation in
any speci�cation scenario. If subsequently further requested system messages are



enabled in speci�cation scenarios, repeatedly a next system message is chosen for
execution. If no requested system messages are enabled in speci�cation scenarios,
then an environment event is chosen that must not lead to a safety violation in
any assumption scenario. Then this process is repeated.

During the play-out of our example speci�cation shown in Listing 1,
after an occurrence of env -> car.approachingObstacle(), we arrive
in a state where the messages in lines 26+27 and 39 are enabled. car ->
driver.showGo() and car -> driver.showStop() are requested,
but they are currently blocked, because they would lead to a violation of
the scenario ControlStationChecksForCarApproachingOnBlockedLaneEntering-

Allowed, which requires car -> obstacleControl.register() and
obstacleControl -> car.driveAllowed()/obstacleControl ->
car.driveForbidden() to occur before STOP or GO is shown to the user.

4 Distributed Execution

We support the modeling and play-out of SDL speci�cation within our Eclipse-
based tool suite ScenarioTools [15]. As domain models, an SDL speci�cation
can refer to ECore class models of the Eclipse Modeling Framework (EMF).
EMF allows us to create instances of that class model, for example to create an
object model of the car system shown in Fig. 1. The play-out then interprets an
SDL speci�cation based on such an object model.

To realize the execution on a distributed robot system, we run the play-out
engine of ScenarioTools on the robots or other components, for example the
control station. This requires a device to execute a Java SE Virtual Machine.
In our case, the robots and control station are controlled by Raspberry Pis,
for which a Java SE exists. In our yet naive approach, each component runs a
play-out of the complete system, and all components must synchronize on each
message event. This synchronization is realized via an MQTT protocol.

We explain how our system works step by step, see the numbers in Fig. 3.
Let us start with a robot that picks up an environment event via a sensor. In our
example, the robots are equipped with RGB sensors to detect color tapes on the
track (see photo in Fig. 1) that represent reaching certain points, e.g. �approach-
ing obstacle�. This event generates a message which is then published via the
local MQTT client (1+2). The MQTT broker then broadcasts this message (3)
to all clients. Upon receiving messages, each client will check if it corresponds to
one of its actuator events, which would then be executed (4). This of course re-
quires a platform-speci�c mapping of message events to sensor-/actuator events.

Each message received is forwarded to the executor (5), which calls the
ScenarioTools play-out engine to execute it (6). ScenarioTools then up-
dates a list of enabled requested system messages (7). If this list contains events
sendable by the client, the executor selects one of them and publishes it (8).

If no executor of any component chooses a next system message, the compo-
nents wait for the next environment event. Environment events are bu�ered if
they are picked up via the sensors while system messages are still being executed.



other clients

MQTT boker

sensors actuators

client (e.g. robot)

MQTT clientexecutor

ScenarioTools
play-out engine 1

3

publish sensor event

publish
event

broadcast
event

5

6
execute
step

enabled requested
system events

7

if event is 
actuator 
event of 
client then 
execute

4

8
select and send event
sendable by client

3

2

Fig. 3. Example of how messages generated by sensors propagate through the system.

In this approach, it may happen that an executor chooses a message to ex-
ecute, which is actually blocked due to a change in the play-out state that is
yet unknown by the client. This can be caused by a message chosen by another
client, which, due to a delay in the communication, has just not been received
yet. This would be a violation of the execution; it could be prevented by de�ning
a globally deterministic strategy for choosing events, or an engineer would have
to explicitly specify the necessary synchronization among the components.

A strength of this approach is that also assumption scenarios can be executed
and so the system can detect when the environment behavior deviates from the
assumptions. When it does, the engineer must modify the assumptions, can
validate the speci�cation in an o�ine play-out �rst, and �nally redeploy.

5 Related Work

There exist approaches for synthesizing distributed �nite-state controllers from
LSC/MSD speci�cations [12,9,2,4], but they all assume a �xed and static object
model. Ideas for distributing play-out exist [1,13], but they also assume a static
object model, and the play-out is distributed for performance, rather than aiming
to �t the architecture of a distributed embedded system.

Sousa et al. [16] describe a framework for executing DSL models, but do not
address distributed execution. Sampaio et al. [14] show how to control a power
micro-grid by executing an MGridMLmodel that speci�es event-condition-action
rules. Distributed components are controlled by a central controller.

6 Conclusion

We developed a technique for the distributed play-out of SDL speci�cations, a
textual variant of LSCs/MSDs. The approach can be used to implement spec-
i�cations of complex systems with distributed and concurrent behavior. The
novelty is that it supports dynamic object models and dynamic role bindings.

We evaluated the approach by a Car-to-X example that can be executed by
Raspberry Pi-based robots. Our naive approach has limitations in performance



and scalability, which we plan to address in future work. Furthermore, we aim to
consider runtime-adaptation to speci�cation changes and recovery from failures.
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