
Scenario-based Specification of Car-to-X systems

Scenario-based Specification of Car-to-X systems1

Joel Greenyer2, Daniel Gritzner2, Nils Glade2, Timo Gutjahr2, Florian König2

Abstract: Cyber-physical systems are found in many areas, such as manufacturing, transportation, or
smart cities. They consist of many components which cooperate to provide the desired functionality.
This need for cooperation causes complex interactions between components, which makes develop-
ing a cyber-physical system difficult. To support engineers developing such systems we have created
a design- and specification method which makes it easier to develop reactive systems, especially
cyber-physical systems. Object-oriented modeling combined with a scenario-based behavior speci-
fication provide an intuitive, yet precise way to formally specify reactive systems. We implemented
a tool which uses this kind of formal specification to allow engineers to simulate, visualize, check,
and execute their specifications. This helps with reducing development costs as inconsistencies, and
thus defects in the system, are spotted early, when it is still relatively cheap to make changes to the
system. We evaluated this technique by building a Car-to-X system, in which Raspberry Pi-based
robots emulated autonomous cars.

Keywords: scenario-based specification, cyber-physical system, Car-to-X, simulation, realizability

1 Introduction

In many areas, for example, transportation, industry, and healthcare, we find cyber-
physical systems (CPSs). CPSs consist of many cooperating components and are used
to control complex processes in order to provide rich functionality. Each such process is
typically controlled by multiple components and each component is involved in control-
ling multiple processes at the same time. This causes complex interactions between the
components in a CPS. As users demand increasingly rich functionality of a CPS, these
inter-component interactions become increasingly difficult to cope with when developing
a cyber-physical system.

CPSs can also be found in smart cities, e.g., in the form of autonomous cars or cars with
advanced driver assistance systems. These cars, which can be regarded as components of
a CPS, need to cooperate to bring their passengers safely to their destinations. Specifying
the correct behavior of each car in all situations is a difficult problem, especially when
considering the dynamically changing relationships between cars at runtime.

In order to help engineers cope with the complexity of developing a cyber-physical system,
we developed a formal method for specifying the behavior of a system. In our method we
1 This work is funded by grant no. 1258 of the German-Israeli Foundation for Scientific Research and Develop-

ment (GIF)
2 Leibniz Universität Hannover, Fachgebiet Software Engineering, Welfengarten 1, D-30167 Hannover, Ger-

many, {greenyer | daniel.gritzner}@inf.uni-hannover.de
Copyright c© 2016 for the individual papers by the papers’ authors. Copying permitted for private and academic
purposes. This volume is published and copyrighted by its editors.

Joel Greenyer, Daniel Gritzner, Nils Glade, Timo Gutjahr, Florian König

define the system’s behavior through a scenario-based description of the interactions of its
components. Scenarios specify how a set of system components may, must, or must not
react to external events.

In this paper we illustrate how to use SCENARIOTOOLS, an implementation of our method,
to build a system based on Car-to-X communication. In this system autonomous cars,
emulated by Raspberry Pi-based robots, needed to cooperate to safely pass an obstacle,
i.e., to avoid a collision with each other. Our setup for testing is shown in Fig. 1 and was
explained before [Gr15]. In this paper we focus on the specification methodology.

Figure 1: Raspberry Pi-based robots emulating autonomous cars

The paper is structured as follows. Section 2 explains scenario-based modeling with the
help of an example. Our modeling process itself is discussed in section 3. Sections 4 and
5 are dedicated to related work and what how we plan to extend our design method and
tools in the future. Finally, we provide a conclusion in section 6.

2 Scenario-based Modeling

Engineers typically think of scenarios, that include certain requirements, when trying to
formalize requirements. This makes the behavior modeling with scenarios, which we de-
scribe in this section, an intuitive and natural process [Al14, GMMS12].

construction control

1

2

approaching an obstacle
on the blocked lane

show stop
or go

3

before
obstacle is
reached

1
approaching an obstacle

on the blocked lane

entering
(Dis)Allowed2

register 4

is narrow area free?
(any car registered
for approach from
the other side?)

construction control

3

5
show stop

or go

Scenario 2 “Control station checks for car approaching
on the blocked lane whether entering is allowed or not”

Scenario 1 “Dashboard of the car approaching
on the blocked lane shows STOP or GO”

Figure 2: Sketches of scenarios

A scenario describes a short interaction between objects. The interplay of multiple sce-
narios, which may be active concurrently, then defines the system’s behavior. This means
a formal specification is the same as a set of formal scenarios. An example is shown in
Fig. 2. The example describes an advanced driver assistance system. The first scenario
describes what must happen when a car approaches an obstacle (1). The car’s dashboard

Scenario-based Specification of Car-to-X systems

must notify the driver whether he is allowed to pass the obstacle or whether he must wait
(2). This notification must arrive before the driver actually reaches the obstacle (3). This is
a scenario which may be discussed with stakeholders, who do not have a technical back-
ground, but are still interested in formulating requirements on the final system. The second
scenario then refines the same situation from the point of view of an engineer. When a car
approaches an obstacle (1), it registers itself at the obstacle’s controller (2), which in turn
decides (3) whether to allow the car to pass or not (4). The car can use the obstacle con-
troller’s reply to update the dashboard (5).

1 specification scenario DashboardOfCarApproachingShowingStopOrGo
2 with dynamic bindings [bind dashboard to car.dashboard] {
3 message env -> car.approachingObstacle()
4 alternative { message strict car -> dashboard.showGo() }
5 or { message strict car -> dashboard.showStop() }
6 message env -> car.obstacleReached()
7 }

Listing 1: Example of a scenario written in the Scenario Design Language

Listing 1 shows a formal version of the first scenario in Fig. 2. The code example is written
in our Scenario Design Language, which is based on the concept of objects exchanging
messages. Keywords are used to define the desired behavior, e.g., strict in lines 4 and 5
means that either of those messages must occur before the message in line 6. Reaching the
obstacle before updating the dashboard would create a safety violation of the system.

3 Specification and Analysis Methodology

This section discusses how to use SCENARIOTOOLS3 to build a cyber-physical system.
An overview of the process is shown in Fig. 3. SCENARIOTOOLS is a collection of Eclipse
plug-ins based on the Eclipse Modeling Framework (EMF) and Xtext.

Building a system with SCENARIOTOOLS consists of three steps which are applied re-
peatedly in iterations until the desired state of the specification is achieved. The steps are
specification, analysis and execution.

In the specification step an engineer adds or changes scenarios to specify the desired sys-
tem behavior. EMF is used to model the objects whose behavior is specified and which rep-
resent the components of the system. We also integrated HENSHIN into SCENARIOTOOLS
to allow engineers to define side-effects of messages to deal with structural dynamism of
the object model at runtime.

Next follows the analysis step in which the engineer can either proceed with a manual
simulation or automatic realizability checking of the specification. During a simulation
the messages to be exchanged are manually chosen from a list as shown in the bottom-
left of Fig. 4. This list is generated based on the current state of all active scenarios. It
only includes messages which the specification currently allows. Simulations are based

3 http://scenariotools.org/

http://scenariotools.org/

Joel Greenyer, Daniel Gritzner, Nils Glade, Timo Gutjahr, Florian König

change / extend
specification

simulate
specification

check
realizability

understand inconsistency
using counter-play-out

execute specification
to validate assumptions

[expected behavior]

[no automatic
analysis]

[unexpected
behavior]

[automatic analysis][manual analysis]

[automatic
analysis]

[unrealizable]

[realizable]

[expected behavior and specification feature-complete]

[unexpected behavior or specification not feature-complete]

Figure 3: Using our methodology to build a cyber-physical system

on the play-out algorithm [BGP13]. This algorithm allows the system to perform any fi-
nite number of steps, represented by requested messages in the specification, between any
two environment events, also represented by messages in the specification. Fig. 5 shows a
visualization of the object model’s state at runtime. This visualization highlights the last
message and its effects. It also reflects structural changes such as cars changing lanes. This
helps engineers understand structural dynamism of the object configuration. The visual-
ization is based on SIRIUS and thus customizable for each system. If a simulation reveals
that the system does not yet behave as expected the engineer can go back to refining the
specification. If it behaves correctly instead, the engineer can still decide to do automatic
realizability checking. Going directly to the execution step is possible as well.

Figure 4: The simulation environment

Figure 5: Visualization of the object model’s state at runtime

Scenario-based Specification of Car-to-X systems

For realizability checking [Gr13] SCENARIOTOOLS still generates the list of enabled mes-
sages but automatically chooses what message to pick next. It explores all possibilities in
order to find a strategy, i.e., instructions defining when which object must send what mes-
sage, in which all objects react correctly and as desired without causing any violations
of the specification. If such a strategy exists, the specification is said to be realizable. If
it is unrealizable, a counter-strategy, which describes how a system can be forced into a
violation, can be created. A counter-play-out, i.e., a simulation with a limited message list
restricted by a counter-strategy, then helps engineers to identify inconsistencies.

Finally, in the execution step the specification is executed on actual hardware in a suffi-
ciently realistic environment. In our example in Fig. 1 Raspberry Pi-based robots played
the roles of autonomous cars to test our Car-to-X specification. This enables testing
whether assumptions made about the environment, such as when which message from the
environment actually occurs, are actually valid. In SCENARIOTOOLS it is even possible
to explicitly model environment assumptions as scenarios. This helps with understanding
how the system must behave, because the environment it is in can be understood better.

4 Related Work

Similar scenario-based specifications techniques exist in the form of graphical Live Se-
quence Charts [DH01, HM03], and have been adopted in the form of behavioral program-
ming in various programming languages [HMW12]. In joint research, we are extending
these techniques to support structurally dynamic systems.

There has been extensive previous work on model-based and formal specification of
CPSs, for example in the SPES 2020 project [Po12] and AutoFOCUS 3 [Ar15]. Also,
RATSY [Bl10] uses formal specifications to synthesize implementations of reactive sys-
tems. To the best of our knowledge, however, there is no other previous work on directly
executing scenario specifications at runtime.

5 Outlook and Research Roadmap

Realizing a cyber-physical system is a difficult task which becomes even more difficult
if its components are physically distributed systems that need to cooperate yet execute
their specific part of the system implementation independently. We already have a naive
implementation of a distributed execution of a specification and we plan to improve it in
order to make more economic use of available resources, e.g., network bandwidth.

While we already support counter-play-out to help engineers find and understand incon-
sistencies, we are working on offering additional tools to support engineers even more to
reduce the time required to fix problems in the specification.

Cyber-physical systems are often found in safety critical areas in which human lives de-
pend on the CPS being available and working correctly. However, little work has been
done on dependability in the area of scenario-based specifications. We plan on expanding
our method to include features to detect faulty behavior and how to recover from it.

Joel Greenyer, Daniel Gritzner, Nils Glade, Timo Gutjahr, Florian König

6 Conclusion

In this paper we presented SCENARIOTOOLS and how to use scenario-based specifica-
tions to design cyber-physical systems using a Car-to-X example. Scenarios are an intu-
itive method for creating formal behavior specifications. They enable the use of powerful
tools which assist engineers with designing consistent systems. This in turn reduces devel-
opment costs as sources for defects can be removed early in the development process.

References
[Al14] Alexandron, G.; Armoni, M.; Gordon, M.; Harel, D.: Scenario-Based Programming:

Reducing the Cognitive Load, Fostering Abstract Thinking. In: Proc. 36th Int. Conf.
on Software Engineering (ICSE). pp. 311–320, 2014.

[Ar15] Aravantinos, V.; Voss, S.; Teufl, S.; Hölzl, F.; Schätz, B.: AutoFOCUS 3: Tooling Con-
cepts for Seamless, Model-based Development of Embedded Systems. Joint proceed-
ings of ACES-MB 2015–Model-based Architecting of Cyber-physical and Embedded
Systems, p. 19, 2015.

[BGP13] Brenner, C.; Greenyer, J.; Panzica La Manna, V.: The ScenarioTools Play-Out of
Modal Sequence Diagram Specifications with Environment Assumptions. In: Proc.12th
Int. Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT
2013). volume 58. EASST, 2013.

[Bl10] Bloem, R.; Cimatti, A.; Greimel, K.; Hofferek, G.; Könighofer, R.; Roveri, M.; Schup-
pan, V.; Seeber, R.: RATSY–a new requirements analysis tool with synthesis. In: Com-
puter Aided Verification. Springer, pp. 425–429, 2010.

[DH01] Damm, W.; Harel, D.: LSCs: Breathing Life into Message Sequence Charts. In: Formal
Methods in System Design. volume 19. Kluwer Academic Publishers, pp. 45–80, 2001.

[GMMS12] Gordon, M.; Marron, A.; Meerbaum-Salant, O.: Spaghetti for the Main Course? Obser-
vations on the Naturalness of Scenario-Based Programming. In: Proc. 17th Conf. on
Innovation and Technology in Computer Science Education. pp. 198–203, 2012.

[Gr13] Greenyer, J.; Brenner, C.; Cordy, M.; Heymans, P.; Gressi, E.: Incrementally Synthe-
sizing Controllers from Scenario-Based Product Line Specifications. In: Proc. 9th joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering 2013. 2013.

[Gr15] Greenyer, J.; Gritzner, D.; Gutjahr, T.; Duente, T.; Dulle, S.; Deppe, F.; Glade, N.;
Hilbich, M.; Koenig, F.; et al.: Scenarios@run.time – Distributed Execution of Specifi-
cations on IoT-Connected Robots. In: Proceedings of the 10th International Workshop
on Models@Run.Time (MRT 2015), co-located with MODELS 2015. 2015.

[HM03] Harel, D.; Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, 2003.

[HMW12] Harel, D.; Marron, A.; Weiss, G.: Behavioral programming. Commun. ACM, 55(7):90–
100, July 2012.

[Po12] Pohl, K.; Hönniger, H.; Achatz, R.; Broy, M.: Model-Based Engineering of Embedded
Systems - The SPES 2020 Methodology. Springer-Verlag Berlin Heidelberg, 2012.

	Introduction
	Scenario-based Modeling
	Specification and Analysis Methodology
	Related Work
	Outlook and Research Roadmap
	Conclusion

