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ABSTRACT
Software-intensive systems often consist of cooperating reactive

components. In mobile and reconfigurable systems, their topology

changes at run-time, which influences how the componentsmust co-

operate. The Scenario Modeling Language (SML) offers a formal ap-

proach for specifying the reactive behavior such systems that aligns

with how humans conceive and communicate behavioral require-

ments. Simulation and formal checks can find specification flaws

early. We present a framework for the Scenario-based Programming

(SBP) that reflects the concepts of SML in Java and makes the sce-

nario modeling approach available for programming. SBP code can

also be generated from SML and extended with platform-specific

code, thus streamlining the transition from design to implementa-

tion. As an example serves a car-to-x communication system. Demo

video and artifact: http:// scenariotools.org/esecfse-2017-tool-demo/
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1 INTRODUCTION
Software-intensive systems in domains like transportation, produc-

tion or logistics often consist of multiple components that react to

external events and cooperate to fulfill the system goals. In mobile

and reconfigurable systems, like car-to-x systems or reconfigurable

production systems, the system topology changes at run-time, i.e.,

properties and relationships of the components change. This influ-

ences how components must cooperate.

The dynamic topology of the system and the distributed and

concurrent nature of the software pose a challenge in the system’s

development. Formal specification and analysis can help engineers

detect design flaws early, and reduce the risk of costly iterations. Sce-

nario modeling methods based on the Scenario Modeling Language

(SML) [7] or Live Sequence Charts (LSCs) [5, 9] are particularly

well-suited for the early design, because they fit well with how

humans conceive and communicate requirements. SML/LSC speci-

fication can be executed via the play-out algorithm [9, 15], which

enables early validation by simulating the scenarios’ interplay.

SML is a textual variant of LSCs [5, 9], and extends LSC with

the means for specifying environment assumptions in the form of

assumption scenarios. Assumption scenarios, together with guar-
antee scenarios, which specify the desired system behavior, form

an assume-guarantee specification. The expressive power of SML

is comparable with the GR(1) (Generalized Reactivity of Rank 1)

fragment of LTL, which supports expressing many practically rele-

vant properties while efficient controller synthesis and realizability

checking algorithms exist for this class of specifications [4, 17].

The modeling and analysis of SML specifications is supported

by ScenarioTools
1
. ScenarioTools implements a GR(1) game

solving algorithm by Chatterjee et al. [4] for controller synthe-

sis and realizability checking. The algorithm checks whether for

any sequence of environment events, the system has a strategy for

choosing system events in such a way that when all assumption sce-

narios are satisfied, so are all guarantee scenarios. The specification

is realizable if such a strategy exists, and unrealizable otherwise.
Once the realizability of a specification is established, an imple-

mentation must be constructed that satisfies the specification, and

possibly extends the specified behavior with further details, such

as platform-specific functionality. For example, the specification

of a car-to-x system may mention movement events of cars, like

“approaching obstacle”. However, how these events are interpreted

from a car’s GPS or other sensors is platform specific functionality.

1
http://scenariotools.org

http://scenariotools.org/esecfse-2017-tool-demo/
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An implementation can be constructed manually, which, how-

ever, is error prone. We can also use controller synthesis and gen-

erate code from the synthesized strategy. However, controller syn-

thesis cannot handle systems with large or potentially unbounded

numbers of components, as for example in a city-wide, open car-

to-x system. For such systems it only makes sense to check the

specifications in the context of configurations of a few components,

for example typical traffic situations in a car-to-x application.

Finally, we can execute the scenarios with the above-mentioned

play-out algorithm. Such an approach, however, must allow devel-

opers to extend the specified behavior with platform-specific code,

and it must support executing the scenarios in a distributed system.

Addressing these requirements, we developed a novel framework

for the Scenario-Based Programming (SBP) in Java. It reflects the

concepts of SML (and LSCs) in Java and allows programmers to

program scenarios as special scenario threads in Java. The frame-

work is based on the Behavioral Programming framework for Java

(BPJ) [11], which we extended to serve as the play-out algorithm.

We also developed an SML-to-SBP compiler, so that SML speci-

fications that were previously checked in ScenarioTools can be

translated automatically into SBP. Guarantee scenario threads drive

the execution, while assumption scenario threads monitor whether

the environment in which the system is deployed satisfies the spec-

ified assumptions. SBP programs can be extended with platform-

specific functions by adding further SBP modules or other Java

code. We also developed a technique for the distributed execution

of SBP programs. The distributed execution technique does not yet

scale for larger systems, but we are working on improvements [19].

In this tool demo, we present the novel SBP framework by the

example of a car-to-x driver assistance system that allows cars to

safely pass obstacles that create a narrow passage on a road. We also

demonstrate the design method sketched in Fig. 1: (1) Model and (2)

analyze SML specification, including, first (a) realizability checking

the specification and then (b) verifying that a play-out execution

will satisfy the specification; (3) generate SBP code from the SML

specification, and (4) extend it with platform-specific functionality.
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Figure 1: Scenario-based design to implementation method

We introduce the example and background in Sect. 2, present SBP

in Sect. 3, discuss related work in Sect. 4, and conclude in Sect. 5.

2 EXAMPLE AND BACKGROUND
We consider a car-to-x (car-to-car and car-to-infrastructure) com-

munication system that assists drivers in passing a narrow passage

created by obstacles such as road works. Figure 2 shows a sketch.

End points of the obstacle are defined as GPS coordinates. There are

three perimeters around each end point. A car entering the outer

perimeter approaches the obstacle; a car entering the next perimeter

reached the obstacle; a car entering the innermost perimeter entered
the narrow passage. Approaching cars must communicate with an

obstacle controller to coordinate passing the obstacle safely.

: obstacle end-point 
  (GPS) coordinate approaching-

obstacle

obstacle controller

entered-
Narrow-
Passage

obstacle-
reached

Figure 2: car-to-x narrow passage coordination sketch

Consider two guarantee scenarios for this system. G1: When
a car approaches the obstacle, the obstacle controller must allow or
disallow the car to enter the narrow passage before the car reaches
the obstacle. G2: When a car approaches the obstacle, it must register
at the obstacle controller. Then the obstacle controller must check
whether another car is already registered for passing the obstacle. If
so, the obstacle controller must add the approaching car to a waiting
list and disallow it from entering; otherwise, it must register the car
for passage and allow it to enter.

To specify the system further, more scenarios are added. G1
and G2 describe complementary requirements, while both mention

allowing or disallowing a car to enter; a non-deterministic choice

in G1 between allowing or disallowing is refined in G2.
SML: Listing 1 shows how the two scenarios are modeled in

SML. An SML specification models how objects in an object model
shall interact by sending messages. We consider synchronous com-

munication where the sending and receiving of a message is a

single message event. A message event has one sending and one

receiving object, refers to an operation defined for the receiving

object, and carries values for parameters if any are defined by its

operation. Message event may have side-effects on the object model.

For example, message events referring to set-operations change the
corresponding property of the receiving object.

An infinite sequence of message events and object models (that

evolve through side-effects from an initial one) is called a run.
The object model is partitioned into controllable (system) objects

and uncontrollable (environment) objects. A message event sent

by a system object is a (controllable) system event; if sent by an

environment object, it is an (uncontrollable) environment event.
An SML specification refers to a domain class model that de-

scribes a set of possible object models for which the specification

models the behavior. For execution and analysis, a concrete (initial,

possibly evolving) object model, for example one as shown in Fig. 2,

must be provided in an external configuration (omitted for brevity).

In this example, the class model defines cars, the obstacle con-

troller, and a coordinate processor. Cars and obstacle controllers are

system objects. The coordinate processor is environment; it is an ab-

straction of a car’s position sensors that, with knowledge of obstacle
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1 specification CarToXSpecification {
2
3 domain cartox
4
5 controllable { Car ObstacleController }
6
7 collaboration CarsPassObstacle {
8 dynamic role CoordinateProcessor cp
9 dynamic role ObstacleController oc

10 dynamic role Car car
11
12 guarantee scenario CarGetsSignalBeforeReachingObstacle
13 bindings [oc = cp.obstacleController] {
14 cp -> car.approachingObstacle()
15 alternative { strict oc -> car.enteringAllowed() }
16 or { strict oc -> car.enteringDisallowed() }
17 cp -> car.obstacleReached()
18 }
19
20 guarantee scenario CarRegistersAtObstacle
21 bindings [oc = cp.obstacleController] {
22 cp -> car.approachingObstacle()
23 strict urgent car -> oc.register()
24 alternative [oc.passingCar == null] {
25 strict urgent oc -> oc.setPassingCar(car)
26 strict urgent oc -> car.enteringAllowed()
27 } or [oc.passingCar != null] {
28 strict urgent oc -> oc.waitingCars.add(car)
29 strict urgent oc -> car.enteringDisallowed()
30 }
31 }
32
33 assumption scenario DriverObeysSignal
34 bindings [cp = car.cp] {
35 oc -> car.enteringDisallowed()
36 oc -> car.enteringAllowed()
37 } constraints [ forbidden cp -> car.enterNarrowPassage() ]
38 ...
39 }
40 ...
41 }

Listing 1: Part of car-to-x SML specification

end points, can generate the events approachingObstacle,
obstacleReached, and enterNarrowPassage. Such ab-

stractions are typical during the early design.

Scenarios are organized in collaborations, which define roles that
represent objects in an object model. The scenarios refer to roles in

messages, which are used to specify valid orders of message events.

A scenario is interpreted as follows w.r.t. a run: As a message

event occurs that corresponds to the first scenariomessage, an active
copy of that scenario is created, and the sending and receiving roles

of the scenario message are bound to the sending and receiving

objects of the message event. Then binding expressions are evaluated
to calculate bindings for other roles. The active copy progresses on

the occurrence of further events that match enabled messages.

When a strict message is enabled, it means that message events

are forbidden that corresponds to a message in the same scenario

that is not currently enabled. If an urgent message is enabled, this

means that a corresponding message must occur before the next en-

vironment event. SML supports other modalities, also for modeling

unbounded liveness properties, but we omit them for brevity.

A scenario can have a constraints section with forbidden mes-

sages. They represent events that must not occur while the scenario

is active. This way, the assumption scenario in List. 1 says that when

the obstacle controller disallowed a car to enter the narrow passage,

the car will not enter before the obstacle controller allows it.

A run satisfies an SML specification if it leads to no violations

of any guarantee scenario or there is a violation in at least one

assumption scenario. One general underlying assumption is that

the system is fast enough to send any finite number of system

events in response to an environment event.

The play-out algorithm [3, 9, 10] executes an SML specification

by executing message events corresponding to enabled urgent sys-

tem messages in active guarantee scenarios, as long as they are not

forbidden by any other active guarantee scenario. If there are no

such events, play-out waits for the next environment event.

ScenarioTools can build a graph of all possible play-out execu-

tions. It is the basis for realizability checking and verifying whether

runs resulting from play-out will be valid, see step (2) in Fig. 1.

Realizability checking is based on a GR(1) game solving algo-

rithm by Chatterjee et al. [4]. It may fail due to contradictions in

guarantees or missing environment assumptions. For instance, our

example specification cannot guarantee that no crashes will occur

if the assumption shown in List. 1 is missing.

If the specification is realizable, we must then verify whether

any play-out execution that naively selects system events as out-

lined above will satisfy the specification. This is done by checking

whether for all play-out states the strategy generated during realiz-

ability checking identifies all choices of system steps as winning. If

this is not the case, it means that the specification is under-specified

and guarantee scenarios can be added to restrict the choices for

play-out. If the verification is successful, SBP code can be generated.

3 SCENARIO-BASED PROGRAMMING
SBP [13] is based on the BPJ [11] framework

2
. A BPJ program

consists of a collection of BThreads that collaborate by calling a

bSync() method. All BThreads yield at bSync() calls, where

they either request, wait for, or block events. Then an event that is

requested by a BThread and not blocked by any other BThread is

chosen, and BThreads that requested or waited for that event are

notified of the event and resume execution until the next bSync()
call. Then the process is repeated. SBP extends BPJ as follows:

Message events and object model: Events in BPJ can be any

kind of objects. In SBP, events are message event objects that have a

sending and receiving object, a method name, and a list of parameter

values. The object model is stored as a structure of Java objects.

Scenarios threads: Scenario threads are special BThreads that

call bSync() in such a way that it reflects the scenario semantics

sketched above. Urgent system messages are mapped to requested

events, and non-urgent messages are mapped to waited-for events.

When a strict message is enabled, all events in the scenario that are

not requested or waited-for are blocked.

Transformation threads: Side-effects on the object model, for

example of set-messages, are implemented as special BThreads that

wait for the events and perform the object system manipulation.

Event queue thread: This BThreads receives external events
and requesting them for execution. Platform-specific code for gener-
ating external events for the SBP program for example from sensors

can be added to place such events in the event queue.

Spectator threads: These BThreads wait for events that shall
have a side-effect on the platform, i.e., signaling an actuator or

showing information on the UI. Platform-specific code can be added

as spectator threads to translate SBP events to lower-level functions.

2
http://www.wisdom.weizmann.ac.il/~bprogram/bpj/

http://www.wisdom.weizmann.ac.il/~bprogram/bpj/
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1 public class CarRegistersAtObstacleScenario
2 extends CarsPassObstacleCollaboration /*extends Scenario*/{
3
4 @Override
5 protected void initialisation() {
6 addInitMessage(new Message(cp,car, "approachingObstacle"));
7 }
8
9 @Override

10 protected void registerAlphabet() {
11 setBlocked(cp, car, "approachingObstacle");
12 setBlocked(car, oc, "register");
13 setBlocked(oc, oc, "setPassingCar", car.getBinding());
14 setBlocked(oc, car, "enteringAllowed");
15 setBlocked(oc, oc, "waitingCars", car.getBinding());
16 setBlocked(oc, car, "enteringDisallowed");
17 }
18
19 @Override
20 protected void registerRoleBindings() {
21 bindRoleToObject(oc, cp.getBinding().getObstacleCtrl());
22 }
23
24 @Override
25 protected void body() throws Violation {
26 request(STRICT, car, oc, "register");
27 // Begin Alternative
28 List<Message> requestedMessages = new ArrayList<Message>();
29 List<Message> waitedForMessages = new ArrayList<Message>();
30 if ((oc.getBinding().getPassingCar() == null)) {
31 requestedMessages.add(new Message(
32 STRICT, oc, oc, "SETPassingCar", car.getBinding()));
33 }
34 if ((oc.getBinding().getPassingCar() != null)) {
35 requestedMessages.add(new Message(
36 STRICT, oc, oc, "ADDWaitingCars", car.getBinding()));
37 }
38 doStep(requestedMessages, waitedForMessages);
39 // Determine which alternative was chosen
40 if (getLastMessage().equals(new Message(
41 oc, oc, "SETPassingCar", car.getBinding()))) {
42 request(STRICT, oc, car, "enteringAllowed");
43 } else if (getLastMessage().equals(new Message(
44 oc, oc, "ADDWaitingCars", car.getBinding()))) {
45 request(STRICT, oc, car, "enteringDisallowed");
46 }
47 // End Alternative
48 }
49 }

Listing 2: SBP code forCarRegistersAtObstacle scenario

Initializer thread: This is a special spectator thread that waits

for initializing scenario events. On the occurrence of such an event,

it creates a copy of the respective scenario thread and starts it.

Scenario threads can be generated automatically from SML sce-

narios. Listing 2 shows the scenario thread class generated from

the second SML scenario in List. 1. All shown methods override

methods from the Scenario class, the class CarPassObstacle-
Collaboration is an intermediate class generated from the

collaboration; it provides the definitions of the roles (cp, car, oc).
The method initialization() is called when the SBP pro-

gram starts. The initializing message is used by the initializer thread

to know on which event a copy of this scenario should be started.

When the scenario is started, the other methods are executed in

the shown order. registerAlphabet() defines all messages

that occur in the scenario. They are registered as blocked messages

since they are blocked when a strict message is enabled. When a

non-strict message is enabled, these messages are waited for.

The method registerRoleBindings() computes bind-

ings for roles that are not bound based on the initializing event.

The body() method represents the scenario after the first mes-

sage. In the first line we see a call to the request() method that

corresponds to the urgent register message in the SML version. The

remaining code represents the alternative.

Distributed execution: As the systems targeted by SML/SBP

are distributed, it it desirable to deploy SBP programs in a dis-

tributed architecture, such as a system of cars. We implemented a

proof-of-concept technique that relies on the replication of the SBP

program for all components and the synchronization of all com-

ponents upon each event in the system [8]. This helps to keep the

states of the SBP programs consistent, but creates a communication

overhead. We are currently working on reducing this overhead [19].

As proof-of-concept, we could successfully run the SBP program

for the car-to-x application on Android phones. With platform-

specific extensions, they act as a car’s dashboard and position sensor,

so we can exercise the example driving in real cars. The communi-

cation can take place over different kinds of networks. We currently

use MQTT, which is widely used in IoT applications.

4 RELATEDWORK
In previous work [6, 8], we presented a prototype for the distributed

execution of SML specifications by executing them by the Scenario-

Tools runtime, which interprets the SML specification. This, how-

ever, requires many dependencies and a plug-in container, which

made it difficult to deploy of some platforms, such as Android. The

approach presented here is more light-weight and better extensible.

Harel and Maoz describe a mapping from LSCs to AspectJ (S2A)

for play-out [14]. It is similar to SBP, but SBP scenario threads

resemble the SML scenarios more closely than the AspectJ code.

Thus, scenario programming in SBP is more natural. Also, there is

no extensions of S2A to execute in a distributed architecture.

SBP is sceario-based and focuses on the inter-component com-

munication. There are other approaches for developing reactive

systems with dynamic topologies and adaptive behavior that in-

stead focus on modeling the individual component behaviors. For

example, Bagheri et al. [2] use actors for developing adaptive sys-

tems and systems with spatial dynamics, such as air traffic control

systems. DEECO [1] is a framework for adaptive component sys-

tems. Also, MechatronicUML [18] and UML-RT or Papyrus-RT [12]

can be used to model adaptive component systems.

Piechnick et al. present Smart Application Grids, a technique

for exchanging context information in distributed and adaptive

systems [16]. This work is related to our problem of maintaining

consistent views on the object model in a distributed setting once

we abandon the synchronization of all components on each event.

5 CONCLUSION
We presented a method for moving from scenario-based specifi-

cations to scenario-based implementations. The core novelty is

SBP, a framework for the scenario-based programming in Java. It

reflects the concepts of SML and LSCs and allows programmers to

implement scenarios in a way that closely resembles their modeling

in SML or LSCs. SBP programs can be generated automatically

from previously checked SML specifications, they can be extended

with platform-specific code, and we showed how they can be de-

ployed on distributed architectures. This streamlines the transition

from scenario-based specification to implementation. Future work

consists in improving the distributed execution techniques.
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