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Abstract—Scenario-based specification with the Scenario Mod-
eling Language (SML) is an intuitive approach for formally
specifying the behavior of reactive systems. SML is close to
how humans conceive and communicate requirements, yet SML
is executable and simulation and formal realizability checking
can find specification flaws early. The realizability checking
complexity is, however, exponential in the number of scenarios
and variables. Therefore algorithms relying on explicit-state
exploration do not scale and, especially when specifications have
message parameters and variables over large domains, fail to
unfold their potential. In this paper, we present a technique
for the symbolic execution of SML specifications that interprets
integer message parameters and variables symbolically. It can be
used for symbolic realizability checking and interactive symbolic
simulation. We implemented the technique in SCENARIOTOOLS.
Evaluation shows drastic performance improvements over the
explicit-state approach for a range of examples. Moreover, sym-
bolic checking produces more concise counter examples, which
eases the comprehension of specification flaws.

I. INTRODUCTION

Many software-intensive systems, especially cyber-physical
systems, consist of reactive components that interact with each
other and the environment in order to realize complex and
often safety-critical functionality.

During the early design of such systems, it is natural to
conceive and communicate their behavior in the form of
scenarios that describe how the system components may, must,
or must not interact in reaction to environment events. The
formal modeling and analysis of such scenarios is desirable
in order to find specification flaws early, thereby avoid costly
iterations, and to have a solid basis for further development,

Live Sequence Charts (LSCs) [1], [2], and a textual variant,
the Scenario Modeling Language (SML), support modeling
scenarios formally. SML extends LSCs with concepts for spec-
ifying environment assumptions and dynamic topologies [3].

LSC/SML scenarios are executable via the play-out algo-
rithm [4], [2], [5]. The algorithm can be used to simulate
the interplay of the scenarios. Violations encountered during
simulation runs hint at possible specification flaws.

Simulation alone, however, cannot prove the absence of
flaws. Therefore, there exist approaches to formally check the
realizability of such specifications [6], [7], [8], [9], [10], [11],
[12], [13]. Realizability checking means checking whether an
implementation for a specification exists [14]; if a specification
is unrealizable, it means that it contains inconsistencies and

that the environment can always force the system to violate
the specification. Realizability checking can be done through
controller synthesis, which is the automatic construction of
implementations (usually state-based controllers) from a speci-
fication. This requires an exploration of the state space induced
by the specification, which grows exponentially with the
number of scenarios and variables (state space explosion).

One way to address this issue is by mapping the realizability
checking problem to BDD-based model checkers or game
solvers [15], [16]. However, it is difficult to map rich scenario
language concepts, like parameterized messages, dynamic
polymorphic bindings [17], or dynamic topologies [3], to the
lower-level languages used by these tools.

Therefore, we investigate the alternative: to adapt the con-
cept of symbolic execution [18], [19] to LSC/SML specifica-
tions, as it could be more easily integrated into existing tools
that already support the play-out of LSC or SML specifications
with rich language concepts.

Symbolic execution is a technique for executing programs
with symbolic instead of concrete values for inputs. It can
deduce for which constraints on the inputs it is possible to
arrive at a particular part of a program that is of interest, e.g.,
the violation of an assertion. Symbolic execution was also ex-
tended for reactive systems, which periodically receive inputs
and provide outputs, [20], [21], [22]. For LSC/SML scenario
specification, symbolic execution would mean performing
play-out execution with symbolic values for environment event
parameters and initial component state attributes.

Such an approach could improve the scalability of realiz-
ability checking for specifications that have message param-
eters and variables over large domains. Symbolic execution,
however, is generally known not to scale for larger programs,
because the number of program paths that must be checked
grows exponentially with the program size. For the same rea-
son, the symbolic execution of scenarios may not necessarily
improve the scalability with an increasing number of scenarios.

We address the following research questions in this paper:
RQ1: How can the SML/LSC play-out algorithm be extended

for the symbolic interpretation of input values?
RQ2: How can this extended algorithm be employed for

realizability checking?
RQ3: What is the performance of the symbolic interpretation

approach compared to the explicit state approach?



In answer, to these research questions, our contributions are:
RQ1: We developed an extension to the SML/LSC play-out

algorithm to support the symbolic interpretation of message
parameters and component variables. The challenge, compared
to the symbolic execution of sequential programs, is that
during play-out execution, multiple scenarios can be active
and formulate conditions over message parameter- and variable
values. One step in symbolic play-out could thus result in
branching into as many paths as required to cover all possible
combinations of branchings implied by each active scenario.

RQ2: We developed a symbolic realizability checking tech-
nique that, based on symbolic play-out, proves whether or not
a specification is play-out executable. This conditions says that
for any sequence of environment events, a play-out execution
(a) never causes a violation in any guarantee scenario, and (b)
always eventually listens for the next environment event.

In order to prove play-out executability, we must first build a
finite graph of all symbolic play-out executions. On this graph,
we search for violating states and cycles of only systems steps.

Building such a graph includes deciding, on the exploration
of a new transition (representing a play-out step), whether this
transition should lead to a new symbolic state or to an already
existing one that matches the new symbolic state.

We consider two symbolic state matching techniques:
a. state equivalence: Symbolic states are merged when they

represent the same set of concrete states. With this technique,
the paths in the symbolic play-out graph represent exactly the
concrete executions, which allows us to derive the correctness
and completeness of the checking algorithms. However, it may
also result in large graphs, since many symbolic states could be
created with intersections of concrete states that they represent.

b. state subsumption: A newly explored state is merged into
an existing state when the concrete states represented by the
existing state is a superset of the concrete states represented by
the newly explored state, i.e., the former subsumes the latter.
This leads to an over-approximation: the resulting graphs can
be much smaller than the ones created with state equivalence,
while it still ensures that all reachable symbolic states rep-
resent exactly the reachable concrete states. However, not all
paths in the symbolic play-out graph are possible concrete
execution paths. This means that found cycles of only system
steps may be spurious—but additional tests can verify this.

The work in this paper has the limitation that the play-out
executability condition is stronger than more general notions
of realizability (cf. [14], [23], [7], [16]). Checking these no-
tions of realizability usually requires solving games, whereas
we only consider reachability properties and cycle detection.
Nevertheless, this work presented here is still useful and can
be extended to support more general notions of realizability.

We implemented the symbolic realizability checking tech-
niques within SCENARIOTOOLS. For constraint solving, we
integrated the SMT solver Z3 [24]. In particular, SCENARIO-
TOOLS supports the symbolic execution of feature-rich spec-
ifications, including dynamic polymorphic bindings [17], and
systems with dynamic component topologies [3]. Symbolic
execution paths can also be explored interactively.

RQ3: We compared the performance of realizability check-
ing based on symbolic and concrete play-out graphs for a range
of examples. The technique based on state equivalence only
performed well in some cases, while the technique based on
state subsumption scaled well for all examples.

Structure: We introduce an example in Sect. II, basic con-
cepts in Sect. III, and SML in Sect. IV. We give further defi-
nitions in Sect. V, explain symbolic play-out and realizability
checking in Sect. VI, and show evaluation results in Sect. VII.
Related work appears in Sect. VIII and we conclude in Sect. IX

Artifact download: http://scenariotools.org/models-2017/

II. EXAMPLE

As an example, we consider an oven temperature controller
that regulates the temperature of an oven to a set-point tem-
perature. The set-point temperature is stored in a variable. As
inputs, the controller can receive temperature measurements
from a sensor and new set-point temperature settings from a
user. As outputs, the controller can turn a heater on or off, as
well as a light that indicates whether the heater is on or off.

We consider the following guarantees:
G1: When the temperature controller (ctr) receives a mea-

surement from the temperature sensor with a value
greater or equal to the set-point temperature, ctr must
turn the heater off; if the temperature is smaller than the
set-point temperature, ctr must turn the heater on.

G2: When ctr receives a new set-point temperature value,
it must assign it to its set-point temperature variable.

G3: When ctr receives a temperature measurement with a
temperature smaller than the set-point temperature, ctr
must turn the light on.

G4: When ctr receives a temperature measurement with a
temperature greater of equal to the set-point temperature,
ctr must turn the light off.

III. SCENARIO-BASED MODELING – BASIC DEFINITIONS

A specification defines how objects in an object model must
interact by sending messages. The objects represent system
components and environment entities, and are partitioned into
system and environment objects. Objects are instances of
classes in a class model and carry values for attributes defined
by their class. We give basic definitions. Some concepts are
simplified, e.g., we do not define associations between classes.

Definition III.1 (Class model). A class model is a tuple CL =
(Cl,D,Attr,Op), where Cl is a set of classes, D is a set
of data types, Attr ⊆ Cl ×Name × D is a set of named
attributes that are typed over data types D. Name is a set of
names. Op ⊆ Cl×Name×Parameter∗ with Parameter =
(Name × D) is a set of operations that have a name and a
possibly empty list of parameters typed over data types. Op(cl)
are the operations of a class cl ∈ Cl.

Definition III.2 (Object model). An object model O =
(O,Oc, Ou, CL, InstanceOf, Values,AttrValues) is a tuple
where O is a set of objects, which is partitioned into con-
trollable objects Oc (also called system objects) and uncon-
trollable objects Ou (also called environment objects). CL =

http://scenariotools.org/models-2017/


(Cl,D,Attr,Op) is a class model and InstanceOf : O → Cl
defines the class for each object. Values is a set of data values,
and AttrValues : O × Attr → Values defines the values of
each object’s attributes (matching the data types).

Definition III.3 (Message Event). We consider syn-
chronous communication where the sending and re-
ceiving of a message is a single event, called mes-
sage event or only event. In an object model O =
(O,Oc, Ou, CL, InstanceOf, Values,AttrValues), a mes-
sage event σ = (os, op, (val0, ...), or) ∈ O×Op×Values∗×
O, is a tuple where os and or are the sending resp. receiving
objects, op ∈ Op(InstanceOf(or)) is an operation of the
target object’s class, and (val0, ...) ∈ Values∗ is a possibly
empty list of values that match the parameters of op. A
message event is controllable if os ∈ Oc and uncontrollable
if os ∈ Ou. A controllable message event is also called
system event; an uncontrollable message event is also called
environment event. ΣO is the set of all message events in object
model O. ΣOu

is the set of all uncontrollable message events;
ΣOc

is the set of all controllable message events.

Message events can change attribute values of objects. By
convention, message events referring to operations named
setAttr (p:DAttr), where Attr is an attribute of the receiving
object’s class with type DAttr, will change the receiving object’s
value for Attr to the value carried by the message event.
We do not consider object creation or destruction, but the
above definitions could be extended to reference properties
(pointers), and many-valued properties.

Definition III.4 (Run). A run of a system π =
O0, σ0,O1, σ1, ... is an infinite sequence of object models and
message events where all Oi, i ≥ 0 only differ in AttrValues.

IV. SCENARIO MODELING LANGUAGE (SML)

SML is a textual scenario specification language. There are
two interpretations of an SML specification: the declarative
and the operational interpretation. In the declarative interpre-
tation, we think of the specification as a description of the
valid runs of a system. The operational interpretation, via the
play-out algorithm, is a description of how the controllable
objects react to uncontrollable events. In this paper, we base
our notion of realizability on the operational interpretation, and
thus focus the following explanations on this interpretation.

Listing 1 shows the SML specification for the oven temper-
ature controller. An SML specification references a domain
class model, called oven here. The class and object models
are not defined in SML, but instead SML uses MOF [25]. In
SCENARIOTOOLS, which is based on the Eclipse Modeling
Framework (EMF), the class and object models are Ecore
models resp. their instances. Ecore implements EMOF [25].

To allow for a flexible combination of an SML specification
with different initial object models, an SML specification
represents objects by roles. The mapping between the roles
in an SML specification and a particular initial object model
is defined by a run configuration, which we omit for brevity.

An SML specification partitions controllable and uncon-
trollable objects by listing classes of controllable objects as
in line 7. Here the controller object is controllable. Instances
of other classes are uncontrollable.

The possible ranges of parameter values for message events
can be defined as shown in lines 9-12.

The scenarios are contained in collaborations, which define
roles that represent objects in the object model. The messages
in the scenarios have a sending and a receiving role. Here the
roles are static, which means that the run configuration defines
fixed one-to-one mappings between a role and an object.
1 import "../model/oven.ecore"
2
3 specification OvenSpecification {
4
5 domain oven // class model
6
7 controllable{ Controller }
8
9 parameter ranges {

10 Controller.measuredTemp(tmp = [0..300]),
11 Controller.modifySetPointTemp(setPointTmp = [50..300])
12 }
13
14 collaboration OvenCollaboration {
15
16 static role Controller ctr
17 static role TemperatureSensor ts
18 static role Heater heater
19 static role Panel panel
20
21 guarantee scenario OvenRegulation {
22 var EInt temp
23 ts->ctr.measuredTemp(bind temp)
24 alternative [temp >= ctr.setPoint]{
25 strict requested ctr->heater.turnOff()
26 } or [temp < ctr.setPoint]{
27 strict requested ctr->heater.turnOn()
28 }
29 }
30
31 guarantee scenario ModifySetPointTemperature {
32 var EInt setPointTemp
33 panel->ctr.modifySetPointTemp(bind setPointTemp)
34 strict requested ctr->ctr.setSetPointTemp(setPointTemp)
35 }
36
37 guarantee scenario PreheatLightOn {
38 var EInt temp
39 ts->ctr.measuredTemp(bind temp)
40 // error: should be >=, to be detected.
41 interrupt [temp > ctr.setPoint]
42 strict requested ctr->panel.preheatingLight(Status:ON)
43 }
44
45 guarantee scenario PreheatLightOff {
46 var EInt temp
47 ts->ctr.measuredTemp(bind temp)
48 interrupt [temp < ctr.setPoint]
49 strict requested ctr->panel.preheatingLight(Status:OFF)
50 }
51 }
52 }

Listing 1. Specification of oven temperature controller

The scenarios shown in List. 1 model the guarantees G1-
G4. The operational (play-out) interpretation of the scenarios
is as follows. First, the system waits for environment message
events to occur. When an event occurs that matches the first
message of a scenario, an active copy of that scenario is
created. If the scenario message has a parameter binding ex-
pression bind 〈var〉, e.g., l. 23 in List. 1, the corresponding
scenario variable is bound to the value carried by the message
event. In the scenario OvenRegulation, the measured temper-
ature is stored. Then the active scenario progresses. Conditions
like alternatives and interrupts are evaluated immediately. If
an interrupt condition evaluates to false, the active scenario is



terminated. Otherwise, the scenario progresses, until the next
message is reached, which is then enabled.

Scenarios messages can be strict or non-strict. When a
strict message is enabled, it means that no message event
must occur that matches another message in the same scenario
that is not currently enabled. Otherwise, this is a safety-
violation of the scenario. When a strict parameterized message
is enabled where the scenario specifies a concrete parameter
value, like Status:ON (l. 42), then also no message event is
allowed to occur that carries another parameter value. Non-
strict messages are allowed to be violated in this way; then
the active scenario terminates as a result. This case does not
occur here, since only the first messages are non-strict.

Scenario messages can also be requested. When there is a
set of active scenarios with enabled requested system mes-
sages, the system non-deterministically executes a message
event that matches one of these messages, but does not lead
to any safety violation of another active scenario. We also say
that an event can be blocked by another active scenario. As
a result of the message event execution, the active scenarios
progress further, terminate when they reach their end, and
other scenarios may be activated as a result. As long as
enabled requested system messages remain, the system must
keep executing them. Otherwise, the system again waits for
the next environment event and the process repeats.

Infinite sequences of system message executions is for-
bidden, since then the system would never again listen to
environment events. Moreover, if there are enabled requested
system messages, but all are blocked, this creates a forbidden
deadlock state. The latter situation can occur in the example:
when a temperature is measured that is equal to the set-point
temperature, the scenarios PreheatLightOn and Preheat-
LightOff request conflicting parameter values—to turn the
preheating light off and on. The flaw is in line 41, where
the greater-than operator should be a greater-or-equal-to.

V. PLAY-OUT GRAPH, PLAY-OUT EXECUTABILITY

In the following, we define the concepts of scenario and
specification more formally. We also define the Play-Out
Graph (POG), a structure that captures all the possible play-
out executions of a specification with a particular initial object
model. We then define play-out executability, the notion of
realizability that we want to check.

We formalize a scenario as a special form of transition
system. SML scenarios can be mapped to this form.

Definition V.1 (Scenario). A scenario sc =
(L, Var,Msg,Msginit, l0, lend, lsv, Lexp,∆,∆req,∆sv)
is a tuple with
• a finite set of locations L.
• a start location l0 ∈ L.
• an end location lend ∈ L.
• a finite set of scenario variables Var.
• a set of scenario messages Msg ⊂ O × Op ×
ParamExp∗ × O. A scenario message msg =
(os, op, (paramexp0, ...), or) ∈ Msg represents one or

several message events; os, or ∈ O are the sending
resp. receiving object, op ∈ Op is an operation, and
(paramexp0, ...) are zero or more parameter expressions,
matching the parameters defined by op. paramexpi can
be (i) a literal value, (ii) a wildcard (*) (iii) a value of a
variable in Var that matches the type of the ith parameter
of op, or (iv) a binding expression for a variable in Var of
compatible type (a binding expression can be used to assign
a message event’s parameter value to a scenario variable).

• a set of initializing scenario messages Msginit ⊆Msg.
• a safety violation location lsv ∈ L.
• a set of progress-expected locations Lexp ⊂ L, where l0 6∈
Lexp and lsv ∈ Lexp.

• a transition relation ∆ : L × Msg × Guard × L. A
transition δ = (ls,msg, guard, lt) ∈ ∆ has a source and
a target location ls and lt, msg is a scenario message,
and guard is a predicate expression over object model
attributes and scenario variables. We also require that ∆
is condition/event deterministic, i.e. for two transitions
δ1 = (ls,msg, guard1, lt1) and δ2 = (ls,msg, guard2, lt2)
it must be that guard1 ⇔ guard2 is a contradiction.

• For each initializing scenario message there exists a transi-
tion leaving the initial location: for all msginit ∈Msginit
it must be that (l0,msginit, guardinit, l) ∈ ∆ for some
l ∈ L and guardinit ∈ Guard that must only refers to
object model attributes and not to scenario variables.

• ∆req ⊂ ∆ is a set of requested transitions; source locations
of requested transitions are progress-expected, i.e., for all
(l,msg, guard, l′) ∈ ∆req it must be that l ∈ Lexp. Also,
transitions in ∆req are labeled with scenario messages
where the sender is a system object.

• ∆sv ⊂ ∆ is a set of forbidden transitions, which lead to
the safety-violation location, i.e., iff (l,msg, guard, l′) ∈
∆sv, guard ∈ Guard, l ∈ L then l = lsv .

• ∆ defines no transitions that leave lsv or lend.

Figure 1 shows the transition-system scenarios for the SML
scenarios in List. 1. Locations where the scenarios are active
are labeled with the lines in List. 1 that they correspond to.

In OvenRegulation, the two transitions leaving l1 to
lend correspond to the messages appearing in the alternative
fragment in l. 25/27 of List. 1. l1 is progress-expected and
the transitions leaving l1 are requested, represented by the
thick border and arrow lines. The transition leading to lsv
represents safety violation that can occur due to the strictness
of the messages. In the PreheatLightOn/-Off scenarios, the
transitions from l0 to lend represent the interrupt conditions.

Definition V.2 (Specification). A specification Spec =
(ScG,O0) consists of an initial object model O0 and a set
of guarantee scenarios ScG = {scG1, ..., scGk}.

Before explaining the POG, we define when a message
event matches a scenario message.

Definition V.3 (Signature). Given a message event σ =
(os, op, (val0, ...), or), we call sig(σ) = (os, op, or) its
signature. Likewise, given a scenario message, msg =



l0 l1
ts→ctr.measuredTemp(bind temp)

[temp >= crt.nominalTemp]
ctr→heater.turnOff()

[temp < crt.nominalTemp]
ctr→heater.turnOn()

lend
ts→ctr.measuredTemp(*)

lsvvar int temp
(scenario variable)

OvenRegulation

l0 l1

[temp > crt.nominalTemp]
ts→ctr.measuredTemp(bind temp)

ctr→panel.preheatingLight(Status:ON)
lend

ctr→panel.preheatingLight(Status:OFF)

lsv
var int temp
(scenario variable)

[temp <= crt.nominalTemp]
ts→ctr.measuredTemp(bind temp)

PreheatLightOn
(with error)

l0 l1

[temp < crt.nominalTemp]
ts→ctr.measuredTemp(bind temp)

ctr→panel.preheatingLight(Status:OFF)
lend

ctr→panel.preheatingLight(Status:ON)

lsv
var int temp
(scenario variable)

[temp >= crt.nominalTemp]
ts→ctr.measuredTemp(bind temp)

PreheatLightOff

l0 l1 ctr->ctr.setSetPointTemp(setPointTemp)
lend

panel→ctr.modifySetPointTemp(bind temp)

lsv
var int setPointTemp
(scenario variable)

panel→ctr.
modifySetPointTemp(bind temp)

ModifySetPointTemperature

lines 25/27

line 34

line 42

line 49

Figure 1. The transition-system scenarios correspond to the SML scenarios

(os, op, (paramexp0, ...), or), its signature is sig(msg) =
(os, op, or). Sig(O) is the set of all signatures where an object
o ∈ O is the sender. (Sig(O) will be needed in Def. VI.4.)

Definition V.4 (Message event matches scenario message). A
message event σ matches a scenario message msg if sig(σ) =
sig(msg) and if for parameter expressions paramexpi of msg
and parameter values vali of σ:

(i) if paramexpi is a wildcard or binding expression.
(ii) if paramexpi specifies a literal value, then it equals vali.

(iii) if paramexpi specifies the value of a scenario variable
var, then the value of var equals vali.

Definition V.5 (Play-out graph (POG)). Given a specifica-
tion Spec = (ScG,O0), the play-out graph POG(Spec) =
(S, s0,ΣO, T ) is a tuple where S is a set of states, s0 is the
start state, ΣO is a set of message events among objects O
of O0, and T ⊆ S × ΣO × S is a transition relation. A
state s ∈ S is a tuple s = (O, AS) of an object model
O and a set of active scenarios AS = {as0, ...asn}. An
active scenario as = (sc, l, VarValuessc) ∈ AS is a tuple
where sc ∈ ScG is a scenario, l is the current location, and
VarValuessc : Varsc → Values is a mapping from scenario
variables of sc to values. We write O(s) for the object model
of s, and AS(s) for the active scenarios of s. s0 is defined
as s0 = (O0, ∅). T is the smallest relation satisfying the
following conditions:
1) environment steps: for all states s = (O, AS) ∈ S where

AS contains no active scenarios with enabled requested
transitions, it must be that (s, σu, s

′) ∈ T for each environ-
ment event σu ∈ ΣOu

.
2) system steps: for all states s = (O, AS) ∈ S where

AS contains at least one active scenario with an enabled
requested transitions, it must be that (s, σc, s

′) ∈ T for
each system event σc ∈ ΣOc

that matches a scenario

message labeling an enabled requested transition of an
active scenario, unless (blocking:) σc matches the message
labeling (a) an enabled forbidden transition of any active
scenario or (b) an initializing forbidden scenario message
where guradinit evaluates to true w.r.t. O(s).

3) change of object model: if (s, σ, s′) ∈ T and σ =
(os, setA, (val), or) is a set-event for an attribute a and
carries the value val as the parameter value, then O(s′) is
the same as O(s), except that AttrV alue(or, a) = val.

4) active scenario initialization and progress: if (s, σ, s′) ∈ T ,
then AS(s′) is as follows:
• active scenario initialization: if σ is a message

event that matches an initializing scenario message
msginit of a scenario sc where it labels a transition
(l0,msginit, guardinit, l

′) and where l′ is not the end
location of sc and guardinit evaluates to true w.r.t.
O(s), then AS(s′) contains an active scenario as =
(sc, l′, VarValues′sc). VarValues′sc assigns all scenario
variables with their default value, unless msginit speci-
fies parameter binding expressions for scenario variables,
in which case these variables are assigned the respective
parameter values carried by σ.

• active scenario progress: if σ is a message event that
matches a scenario message msg that labels an en-
abled transition (l,msg, guard, l′) of an active scenario
as = (sc, l, VarValuessc) ∈ AS(s) then, if l′ is not an
end location of sc, AS(s′) contains the active scenario
as = (sc, l′, VarValues′sc) where VarValues′sc assigns
all scenario variables the same value as VarValuessc,
unless msg specifies parameter binding expressions for
scenario variables, in which case these variables are
assigned the respective parameter values carried by σ.

• event ignored by active scenario: if σ is a message
event that does not match any scenario message msg
that labels an enabled transition of an active scenario
as = (sc, l, VarValuessc) ∈ AS(s) then as ∈ AS(s′).

• active scenario termination: Active scenarios reaching
their end location will not be contained in AS(s′).

Figure 2 shows the POG for the oven specification and
an initial object model where the controller’s initial set-
point temperature is 200. The POG is only shown in parts
as it has ~700.000 states. This is due to the parameter

s0 sp=200; --

s5 sp=200;
OR[l1, temp=0]
PLOn[l1, temp=0]

ts→ctr.measured-
Temp(0)

...

ts→ctr.measuredTemp(...)

s1 sp=200;
MSPT[l1, 
setPointTemp=50]

panel→ctr.modify-
SetPointTemp(50)

...

panel→ctr.modify-
SetPointTemp(...)

s2 sp=50; --

...

ctr→ctr.set-
SetPointTemp(50)

s6 sp=200;
PLOn[l1, temp=0]

s7 sp=200;
OR[l1, temp=0]

ctr→heater.turnOn()
ctr→panel.preheatingLight(   

Status:ON)

... ...
ctr→panel.preheatingLight(Status:ON)

ctr→heater.turnOn()

s3 sp=200;
OR[l1, temp=200]
PLOn[l1, temp=200]
PLOff[l1, temp=200]

ts→ctr.measured-
Temp(200)

s4 sp=200;
PLOn[l1, temp=200]
PLOff[l1, temp=200]

ctr→heater.turnOff()

Figure 2. Part of the POG for the oven temperature regulation specification
and an initial object model where the set-point temperature is set to 200.



ranges. s0 alone has 502 successor states. The state labels
show the stored set-point temperature sp=... as the only
changing attribute of the object model. Active scenarios
are encoded as MSPT = ModifySetPointTemperature, OR
= OvenRegulation, PLOn/PLOff = PreheatLightOn/-Off,
then in brackets follow the current locations of the active
scenarios, as shown in Fig. 1, and the values of scenario
variables. Transitions that are labeled with environment mes-
sage events are dashed, solid otherwise. In s0 there are
301 outgoing transitions for ts->ctr.measuredTemp(x)
with x ∈ [0..300] and 251 outgoing transitions for
ts->ctr.modifySetPointTemp(y) with y ∈ [50..300].
In s5, s6, s7, we see how the active scenarios OR and PLOn
create a non-deterministic choice of whether to first turn on
the heater and then the preheating light or vice versa. s4 is a
state where all transitions lead to a safety violation, due to the
contradiction of whether to turn the preheating light on or off.

We define play-out executability as a notion of realizability.

Definition V.6 (Play-out executability). A specification Spec
is play-out executable if POG(Spec) contains
• no deadlock states (happens when at least one next system

step is requested, but all of them are blocked, as in Fig. 2).
• no safety-violating states, i.e., state where at least one active

scenario is in a safety-violating location. (Such violations
can be caused by environment events).

• no cycles of only system events.

More general notions of realizability exist (cf. [14], [23], [7],
[16]), which are defined via the existence of an implementation
that satisfies a specification. Without laying out the details,
play-out executability is a stronger condition; it implies the
existence of an implementation, but if an implementation
exists, the specification may not be play-out executable. For
instance, it could be that a POG contains deadlock states, but
they could be avoided by a system that makes smart choices in
states where multiple system steps are possible. In this case,
the specification is realizable but not play-out executable.

The POG is finite if the specification is finite, which means
that the number of scenarios, objects, variables, and attributes
are finite, and all domains are finite. In this case, checking
play-out executability is decidable: Deadlock states and safety-
violating states can be found by using search algorithms, e.g.
DFS. Cycles of only system events can be found via nested-
DFS or Tarjan’s algorithm for finding strongly connected com-
ponents (SCCs). The run-time complexities of these algorithms
are linear w.r.t. to the size of the graph.

VI. SYMBOLIC PLAY-OUT AND REALIZABILITY
CHECKING

To counteract the problem of POG explosion due to message
parameters, scenario variables, and object attributes, we turn
to a symbolic interpretation of their values. By considering
object attributes as symbolic inputs, we can even analyze
specifications with multiple initial object models at once.

We define a symbolic play-out graph (SPOG) in Sect. VI-A,
then describe how to check play-out executability based on this

graph in Sect. VI-B, and describe approximation techniques in
Sect. VI-C.

A. Symbolic Play-Out Graph

A symbolic play-out graph (SPOG) is a play-out graph
where each symbolic state represents a set of concrete POG
states, and a path represents a set of possible play-out runs.
Each symbolic state may store symbolic values for variables
and attributes and transitions are labeled with symbolic mes-
sage events, which carry symbolic values for their parameters.
Moreover, each symbolic state has a path constraint (PC),
which is a formula over symbolic values; The PC constrains
the possible concrete values of the symbolic values in a
symbolic state, and it is formed as follows.

Each time that a parameterized event occurs in a symbolic
state s̃, a new symbolic value is introduced for each parameter
and, typically, some constraint for that new symbolic value is
added, so that the PC of a target symbolic state s̃′ is the con-
junction of that constraint and the PC of s̃. For example, con-
sider the symbolic event ts->ctr.measuredTemp(t0),
where t0 is a symbolic value. Since a range [0..300] is
defined for this parameter (see List. 1), the constraint 0 ≤
t0 ≤ 300 is added to the PC of the target state.

Where the symbolic message event matches a scenario
message with a binding expression for a parameter, as for
example in the scenario OvenRegulation, the symbolic value
carried by the symbolic message event is also assigned to
the corresponding scenario variable, i.e., a symbolic active
scenario stores temp = t0. Via set-messages, as in the sce-
nario ModifySetPointTemperature, the new symbolic value
can then also be assigned to an object attribute,

Moreover, it may be that, depending on the concrete values
assumed for symbolic values, the active scenarios progress
differently. For example, in the scenario OvenRegulation
there is an alternative condition over the scenario variable
temp and the object attribute ctr.setPointTemp, which
means that the progress depends on the relationship of the
symbolic values stored for that scenario variable and object
attribute, i.e., t0 ≥ sp0 or t0 < sp0, where sp0 is the symbolic
value stored for ctr.setPointTemp. In such a case, a
symbolic message event may lead to two or more target states
with different path constraints and different progress of the
active scenarios. We call this a split.

In this example the scenario OvenRegulation is not
the only scenario that implies a split, but the scenar-
ios PreheatLightOn/-Off also progress differently, depend-
ing on the relationship of the symbolic values carried by
ctr.setPointTemp and their scenario variables, which are
also bound to t0. Effectively, there is a split into three states:

1) t0 > sp0: OvenRegulation takes first alternative and
PreheatLightOff progresses beyond the interrupt

2) t0 < sp: OvenRegulation takes second alternative and
PreheatLightOn progresses beyond the interrupt

3) t0 = sp0: OvenRegulation takes first alternative and
PreheatLightOn and PreheatLightOff progress beyond
the interrupt (here we again have the deadlock)



Definition VI.1 (Symbolic object model). A symbolic object
model Õ = (O,Oc, Ou, CL, InstanceOf, SymAttrValues)
is an object model as in Def. III.2, except SymAttrValues
maps attributes of objects to concrete or symbolic values:
SymAttrValues : O ×Attr → Values ∪ SymValues.

Definition VI.2 (Symbolic specification). A symbolic speci-
fication S̃pec = (ScG, Õ0) is a specification that refers to a
symbolic initial object model Õ0 instead of a concrete one.

Definition VI.3 (Symbolic message event). A symbolic mes-
sage event σ̃ = (os, op, (sym0, ...), or) ∈ O × Op ×
SymValues∗ × O, is a message event as in Def. III.3 except
that instead of carrying concrete values for parameters, a
symbolic message event carries symbolic values (sym0, ...).

Definition VI.4 (Symbolic play-out graph (SPOG)). Given a
symbolic specification S̃pec = (ScG, Õ0), with O being the
objects of Õ0, the symbolic play-out graph SPOG(S̃pec) =
(S̃, s̃0, Σ̃O, T̃ ) is a tuple where S̃ is a set of symbolic states
s̃0 ∈ S̃ is a symbolic start state, Σ̃O is a set of symbolic
message events among objects O. T̃ ⊆ S̃ × Σ̃O × S̃ is a tran-
sition relation. A state s̃ ∈ S̃ is a tuple s̃ = (Õ, ÃS, PC) that
consists of a symbolic object model Õ, a set of symbolic active
scenarios ÃS = {ãs0, ...ãsn}, and a path constraint PC. A
symbolic active scenario ãs = (sc, l, SymVarValuessc) ∈
ÃS is an active scenario where instead of mapping scenario
variables to concrete values, SymVarValuessc : Varsc →
Values ∪ SymValues is a mapping from scenario variables
of sc to concrete or symbolic values. A path constraint PC is
a formula of a decidable logic over symbolic values. We write
PC(s̃) for the path constraint of a symbolic state s̃, Õ(s̃) is
the symbolic object model of s̃, and ÃS(s̃) are the symbolic
active scenarios of s̃. s̃0 is defined as s̃ = (Õ0, ∅, true). T̃ is
the smallest relation satisfying the following conditions:
1) enabled environment events: for all states s̃ =

(Õ, ÃS, PC) ∈ S̃ where ÃS contains no active scenar-
ios with enabled requested transitions, for all signatures
sig ∈ Sig(Ou), the symbolic message event σu with (1)
sig(σ̃u) = sig and (2) σu carries new symbolic values
(p0, ...) for each parameter, is an enabled event in s̃ (If an
event is enabled in s̃, it means that there is a set of zero or
more transitions (s̃, σ̃u, s̃

′) in T̃ , as detailed below.)
2) enabled system events: for all states s̃ = (Õ, ÃS, PC) ∈ S̃

where ÃS contains at least one active scenarios with at least
one enabled requested transitions, and for each scenario
message msg that labels such a transition, the symbolic
message event σ̃c with (1) sig(σ̃c) = sig(msg) and (2) σc
carries new symbolic values (p0, ...) for each parameter, is
enabled in s̃.

3) change of object model: if (s̃, σ̃, s̃′) ∈ T̃ and σ̃ =
(os, setA, (symV al), or) is a set-event for an attribute
a and carries the value symV al as the parameter
value, then Õ(s′) is the same as Õ(s), except that its
SymAttrV alue(or, a) = symV al.

4) split / active scenarios initialization and progress: if σ̃
is enabled in s̃ (as in 1) and 2) above), then T̃ contains

the transitions defined as follows (we define conditions on
which we have different combinations of active scenario
progresses and initializations, which then become part of
the target state’s PC): Let ∆σ̃

1 , ...,∆
σ̃
m be the initializing

transitions of scenarios in ScG labeled with a scenario
message msg where sig(msg) = sig(σ̃). Furthermore,
let ∆σ̃

m+1, ...,∆
σ̃
n be the enabled transitions of the active

scenarios in s̃ labeled with a scenario message msg where
sig(msg) = sig(σ̃). If δ = (ls,msg, guard, lt) is a
transition in ∆σ̃

i , then prσ̃δ is the progress condition for δ on
σ̃; it consists of guard conjoined with pj = val for each
parameter j of msg where msg specifies a literal value
val and pk = SymVarValues(var) for each parameter k
where msg specifies a variable value var. (blocking:) If
σ̃ is a system event and lt is a safety-violating state, then
prσ̃δ is false (as we will see below, this inhibits splitting
into safety-violations). We define Prσ̃i as the set of all
progress conditions of transitions in ∆σ̃

i , plus the condition
that results from the negation of their disjunction, i.e., Prσ̃i
is the set of all conditions where one active scenario is
activated / progresses differently, or is not activated / does
not progress at all, on σ̃. Let then Φσ̃ be the set of all
satisfiable conjunctions of conditions, one from each Prσ̃i ,
i.e., the conditions on which we have a different combi-
nation of active scenario progresses and initializations on
σ̃. For each ϕσ̃ ∈ Φσ̃ , if PC(s̃) ∧ ϕσ̃ is satisfiable, i.e.,
ϕσ̃ represents a possible progress under the current path
constraint, we then have a transition (s̃, σ̃, s̃′ϕ) ∈ T̃ where
PC(s̃′ϕ) = PC(s̃)∧ϕσ̃ and ÃS(s̃′ϕ) is defined as follows:
• active scenario initialization: if δ =

(l0,msginit, guardinit, l
′) is a transition in

scenario sc, l′ is not the end location of sc,
sig(σ̃) = sig(msginit), and prσ̃δ is (syntactically) part
of ϕ, then ÃS(s̃′ϕ) contains a symbolic active scenario
ãs = (sc, l′, SymVarValuessc). SymVarValuessc
assigns all scenario variables with their default value,
except where msg specifies a parameter binding
expression for a scenario variable, this variable is
assigned the corresponding symbolic value carried by σ̃.

• active scenario progress: if δ = (l,msg, guard, l′) is an
enabled transition in the active symbolic scenario ãs =
(sc, l, SymVarValuessc), l′ is not the end location,
sig(σ̃) = sig(msg), and prσ̃δ is (syntactically) part of ϕ,
then ÃS(s̃′ϕ) contains a symbolic active scenario ãs′ =
(sc, l′, SymVarValues′sc) where SymVarValues′sc has
the same value assignments as SymVarValuessc, except
that where msg specifies a parameter binding expression
for a scenario variable, this variable is assigned the
corresponding symbolic value carried by σ̃.

• event ignored by active scenario: if an active scenario
ãs = (sc, l, SymVarValuessc) has no enabled transi-
tions labeled with a message msg such that sig(σ̃) =

sig(msg), then ãs ∈ ÃS(s̃′).
• (active scenario termination) Symbolic active scenarios

reaching their end location will not be in ÃS(s̃′).



Figure 3 shows the SPOG for the oven temperature regula-
tion specification. It contains two extensions that, for brevity,
we do not include in our formal definitions: (1) constraints that
result from message parameter ranges, and (2) a constraint for
the initial range of the controller’s set-point temperature, so
that the PC for the initial state is not true but 50 ≤ n0 ≤ 300.
Note that the PCs deliberately show redundant subformulas as
they result from the definition of the ϕs in Def. VI.4.

Compared with the POG (Fig. 2) we see that the ini-
tial state now only has four outgoing transitions: one rep-
resents the setting of a new set-point temperature. The
other three transitions (leading to s3, s5, s9) represent
the split for ts→ctr.measuredTemp(...) events as
explained above. The PCs in s3, s5, s9 are the PC of
s0 conjoined with the different satisfiable combinations
of the guard conditions of the initializing transitions for
ts→ctr.measuredTemp(...) events in all specification
scenarios. The symbolic active scenarios are the scenarios that
are initialized under the respective conditions.

...
...

s0 sp=sp0; –
PC = 50 ≤ sp0 ≤ 300

s1 sp=sp0;
MSPT[l1, 
setPointTemp=sp1]
PC = 50 ≤ sp0 ≤ 300
 ∧ 50 ≤ sp1 ≤ 300

panel→ctr.modify-
SetPointTemp(n1)

s2 sp=sp2;
PC = 50 ≤ sp0 ≤ 300
 ∧ 50 ≤ sp1 ≤ 300 
 ∧ n2 = sp1

ctr→ctr.set-
SetPointTemp(n2)

s3 sp=sp0;
OR[l1, temp=t0]
PLOn[l1, temp=t0]
PLOff[l1, temp=t0]
PC = 50 ≤ sp0 ≤ 300
 ∧ 0 ≤ t0 ≤ 300 
 ∧ t0 ≥ sp0 ∧ t0 ≤ sp0
 ∧ t0 ≥ sp0

ts→ctr.measured-
Temp(t0)

s5 sp=sp0;
OR[l1, temp=t0]
PLOn[l1, temp=t0]
PC = 50 ≤ sp0 ≤ 300
 ∧ 0 ≤ t0 ≤ 300 
 ∧ t0 < sp0 ∧ t0 ≤ sp0

ts→ctr.measured-
Temp(t0)

s9 sp=sp0;
OR[l1, temp=t0]
PLOff[l1, temp=t0]
PC = 50 ≤ sp0 ≤ 300
 ∧ 0 ≤ t0 ≤ 300 
 ∧ t0 ≥ sp0 ∧ t0 ≥ sp0

ts→ctr.measured-
Temp(t0)

s4 sp=sp0;
PLOn[l1, temp=t0]
PLOff[l1, temp=t0]
PC = 50 ≤ sp0 ≤ 300
 ∧ 0 ≤ t0 ≤ 300 
 ∧ t0 ≥ sp0 ∧ t0 ≤ sp0
 ∧ t0 ≥ sp0

ctr→heater.turnOff()
s6 sp=sp0;
PLOn[l1, temp=t0]
PC = 50 ≤ sp0 ≤ 300
 ∧ 0 ≤ t0 ≤ 300 
 ∧ t0 < sp0 ∧ t0 ≤ sp0

s7 sp=sp0;
OR[l1, temp=t0]
PC = 50 ≤ sp0 ≤ 300
 ∧ 0 ≤ t0 ≤ 300 
 ∧ t0 < sp0 ∧ t0 ≤ sp0

ctr→heater.turnOn()
ctr→panel.
preheatingLight(s0)

...
s8 sp=sp0;
PC = 50 ≤ sp0 ≤ 300
  ∧ 0 ≤ t0 ≤ 300 
 ∧ t0 < sp0 ∧ t0 ≤ sp0 ...

ctr→heater.turnOn()
ctr→panel.
preheatingLight(s1)

...

...

Figure 3. Part of the SPOG for the oven temperature regulation specification.

The SPOG as defined in Def. VI.4 may not be finite, since
message events repeatedly introduce new symbolic values.
Thus the resulting PCs are likely to be different syntactically
even if the symbolic states represent the same set of concrete
states. From s4 in Fig. 3 for example we have two paths that
join again in s8, since the new symbolic values s0, s1 are not
stored. But the SPOG is still infinite.

In order to be able to check play-out executability on the
SPOG, we merge symbolic states when they are semantically
equivalent, i.e., they represent the same set of concrete states.
The state equivalence is defined as follows.

Definition VI.5 (symbolic state equivalence, SPOGEQ). Let
s and s′ be two symbolic states that are equal up to the
names of symbolic values and their PC; we also say they are
structurally equal. Let α0, ..., αn / α′0, ..., α

′
n be the symbolic

values bound to object attributes or scenario variables of s / s′,
with αi bound to the same scenario variable or object attribute
as α′i, and let β0, ..., βm1 / β′0, ..., β

′
m2

be the other symbolic
values appearing in PC(s) / PC(s′). If name collisions

between αi/α′i/βi/β
′
i occur, they are resolved by consistent

renaming. s and s′ are equivalent if the PCs are equivalent
under the assumption that the symbolic values for the same
scenario variables and object attributes take the same values,
but without any constraints on the other symbolic values, i.e.,
if the following formula is satisfiable:

∀α0, ..., αn, α
′
0, ..., α

′
n : (α0 = α′0 ∧ ... ∧ αn = α′n)

⇒ ((∃β0, ..., βm1
: PC(s))⇔ (∃β′0, ..., β′m2

: PC(s′)))

SPOGEQ(S̃pec) is a symbolic play-out graph for a specifi-
cation S̃pec where two states are merged if they are equivalent.

Example: states s0 and s2 in Fig. 3 are equivalent because

∀sp0, sp2 : (sp0 = sp2)

⇒ ((50 ≤ sp0 ≤ 300)⇔ (∃sp1, sp02 : 50 ≤ sp02 ≤ 300

∧ 50 ≤ sp1 ≤ 300 ∧ sp1 = sp2))

is satisfiable. (sp02 is renamed from sp0 for state s2 due to
a name collision.) Also s8 is equal to s0 (and s2). In fact,
the SPOGEQ for the example specification only has 10 states:
all states shown in Fig. 3 minus s2 and s8 (which are merged
into s0), plus the two successors of s9, which again have s0
as their successor. This is a drastic reduction compared to the
~700.000 states for one (explicit) POG.

We establish the following properties for a SPOGEQ:

Lemma VI.1 (Equivalence of SPOGEQ and POGs). Let
S̃pec = (ScG, Õ0) be a symbolic specification that is finite (as
in Sect. III). This means that also Õ0 represents finitely many
explicit object models O1

0, ...,On0 . Then SPOGEQ(S̃pec) rep-
resents POG(Spec1), ..., POG(Specn), Speci = (ScG,Oi0),
in the sense that:

1) each state reachable from the initial state in any
POG(Speci) is represented by at least one symbolic state
in SPOGEQ(S̃pec) that is reachable from the initial
symbolic state.

2) Each path in a POG(Speci) is represented by a path
in SPOGEQ(S̃pec) and each path in SPOGEQ(S̃pec)
represents to a least one path in at least one
POG(Speci).

1) holds since the initial symbolic state of SPOGEQ(S̃pec)
represents all initial states of POG(Spec1), ..., POG(Specn),
and because the split condition ensures that if a concrete
state is represented by a symbolic state, each successor or the
concrete state is represented by a successor of the symbolic
state, i.e., no states are lost. 2) holds since a transition between
two symbolic states s̃ and s̃′ in SPOGEQ(S̃pec) exists if
and only if for all concrete states represented by s̃, some
POG(Speci) has a corresponding outgoing transition to a
concrete state represented by s̃′.

B. Checking play-out executability

Play-out executability checking can be done on a SPOGEQ
using the same search and cycle detection algorithms as
explained for the (explicit state) POG in Sect. III.



Correctness/Completeness: From Lemma VI.1 follows that
deadlock resp. safety violating states and cycles with only
system events exist in the SPOGEQ if and only if they exist in
one of the POGs that it represents.

Termination: the checking terminates because the SPOGEQ
is finite for finite specifications, which follows from the
definition of symbolic states in Def. VI.4, and Def. VI.5.

C. Approximation: state subsumption

Although the SPOGEQ for the above example is very small
compared to the concrete POGs, we may not see such drastic
reductions in all cases. Even worse, the SPOGEQ could have
more symbolic states than there are concrete states. Suppose
that there are n structurally equal concrete states in a POG,
these could be represented by up to 2n different symbolic state
in a SPOGEQ (each representing a different subset of states).

If we extend our oven example by the assumption that tem-
perature measurements only increase or decrease in steps of
one degree, we observe the case that after the first temperature
measurement, the temperature is in [0..300], as indicated by
the ranges (see List. 1). After the next measurement it is either
in [1..300] or [0..299], and so on. This means that a POG could
have a set of 301 structurally equal states that in the SPOGEQ
would be represented by 301*302/2 different symbolic states
(because there are n∗(n+1)/2 different sub-ranges of [0..n]).

To counteract this problem, we turn to a different condition
for merging symbolic states, namely merging a newly explored
symbolic state with an existing one if the existing one repre-
sents a superset of the states represented by the new one, i.e.,
if the new symbolic state is subsumed by the existing one.

The subsumption condition is similar to the equivalence
condition in Def. VI.5, only that the equivalence operator
in the formula is replaced by an implication (⇒, i.e., left
to right), which makes it an antisymmetric relation where
s̃′ subsumes s̃. SPOGSUM (S̃pec) is a symbolic play-out
graph for a specification S̃pec where, during exploration, a
newly explored symbolic state s̃new is merged into an existing
symbolic state s̃old if s̃old subsumes s̃new. With different
orders of exploration of states there may be different graphs
for the same specification.

The play-out executability checking based on a SPOGSUM
is performed as before, by searching for deadlock / safety
violating states and checking for cycles of only system steps.
It terminates for finite specifications, since SPOGSUM is finite
in this case. Also, the checking is complete, but to achieve
correctness, we require an additional step, as explained below.

Lemma VI.1.1) holds for SPOGSUM. However,
Lemma VI.1.2) holds only in one direction, namely
each path in a POG(Speci) is represented by a path
in SPOGSUM (S̃pec), but there may be paths in
SPOGSUM (S̃pec) which correspond to no path in
any POG(Speci). This is sufficient to argue that if
there is a reachable deadlock or safety-violating state in
SPOGSUM (S̃pec), it must also exist in some POG(Speci)
and vice versa. I.e., detection of deadlock / safety violating
states is correct and complete.

If a POG(Speci) contains a cycle of only system steps,
it will also exist in SPOGSUM (S̃pec). This establishes
completeness for the detection of such cycles, but not cor-
rectness, since if SPOGSUM (S̃pec) contains a cycle of
only system steps, we cannot imply that it occurs in any
POG(Speci). Thus, if a cycle of only system steps is found in
SPOGSUM (S̃pec), we need to check subsequently whether
there exists a sequence of concrete message events that ex-
ercises such a cycle. The found symbolic cycle can help in
guiding such a check, i.e., it can help in selecting the right
message events and concrete parameter values. Similarly, we
require such a check if we want to obtain concrete paths to
deadlock / safety-violating states.

VII. IMPLEMENTATION AND EVALUATION

We implemented the symbolic execution and realizabil-
ity checking procedures in SCENARIOTOOLS, which is an
Eclipse-based tool suite for modeling and analyzing SML
specifications with rich scenario language features, such as
dynamic polymorphic bindings [17], assumption scenarios,
and dynamic component topologies [3]. The execution and
analysis in SCENARIOTOOLS is based on an execution engine
that interprets the scenarios and is able to build play-out
graphs. We extended this engine to build symbolic play-
out graphs, which can be used for realizability checking as
explained above, or for interactive step-by-step simulation. For
constraint-solving, we integrated the Z3 SMT solver [24].

In the following, we present evaluation results based on a
range of examples: (1) the above oven temperature regulation
example and (2) an extended variant that includes humidity
regulation, an on/off attribute, and it includes assumptions
that measured temperatures will increase/decrease only in one
degree steps. The third example (3) is the specification of
a tunnel controller that coordinates the passage of cars in
a narrow tunnel. See the appendix of [26] for details. All
examples are tested with different ranges for parameters and
different checking techniques: based on explicit-state POGs
(EXP), SPOGEQs (EQ), and SPOGSUMs (SUM). We time-out
the measurements if no result is reported after 600 seconds.

Table I shows the results of checking the oven temperature
regulation specification as in List. 1, including its specifica-
tion flaw, with different parameter ranges. The left column
shows the ranges for the set-point temperature (sp) (includes
initial attribute value as well as the event parameter) and the
measured temperature (mt). For the explicit state cases, the
initial set-point temperature is 0. The example is a best-case
example—the size of the explicit-state POG almost doubles
when parameter ranges increase by 10, while the sizes of the
symbolic play-out graphs remain constant.

For the extended oven temperature regulation (Table II), we
have an additional relative humidity (rh) parameter. The state
graphs are larger. Most interestingly, the symbolic checking
with state equivalence does not scale and times out even before
the explicit-state checking. This has to do with an explosions
of the symbolic states as explained above. The times for
symbolic checking with state subsumption remains constant.



Table I
OVEN REGULATION EXAMPLE (EXP/EQ/SUB)

ranges (sp mt) #states #transitions time(s)
[0..10] [0..10] 484/10/10 1056/16/16 6/1/1
[0..20] [0..20] 1764/10/10 3906/16/16 25/1/1
[0..30] [0..30] 3844/10/10 8556/16/16 63/1/1
[0..40] [0..40] 6724/10/10 15006/16/16 121/1/1
[0..50] [0..50] 10404/10/10 23256/16/16 205/1/1
[0..60] [0..60] 14884/10/10 33306/16/16 312/1/1
[0..70] [0..70] 20164/10/10 45156/16/16 479/1/1

[0..300] [0..300] -/10/10 -/16/16 >600/1/1

Table II
EXTENDED OVEN REGULATION EXAMPLE (EXP/EQ/SUB)

ranges (mt sp rh) #states #transitions time(s)
[0..2] [0..2] [0..1] 513/453/184 2496/1509/599 39/117/33
[0..4] [0..2] [0..1] 944/656/172 6577/2240/559 106/225/30
[0..6] [0..2] [0..1] 1514/846/172 13435/2898/559 193/397/31
[0..8] [0..2] [0..1] 2208/-/172 23430/-/559 410/>600/31

[0..10] [0..2] [0..1] 3014/-/172 38455/-/559 565/>600/32
[0..20] [0..2] [0..1] -/-/172 -/-/559 >600/>600/32
[0..40] [0..2] [0..1] -/-/172 -/-/559 >600/>600/31
[0..80] [0..2] [0..1] -/-/172 -/-/559 >600/>600/33

[0..300] [0..300] [0..100] -/-/200 -/-/631 >600/>600/35

The tunnel controller coordinates the safe passage of cars
that can enter a narrow tunnel from two sides. If there are cars
in the tunnel, cars coming from the other direction must wait
until all cars have left the tunnel. The specification consists of
9 scenarios and the number of cars in the tunnel is represented
by an integer parameter. Table III shows the results for check-
ing play-out executability. We consider different maximum
numbers of cars that can be in the tunnel. We see that the
explicit-state POGs grow with the number of cars in the tunnel.
Again, the symbolic checking with state equivalence shows
even larger graphs than the explicit-state POGs. The SPOGs
with state subsumption again have a constant size.

Table III
TUNNEL CONTROLLER (EXP/EQ/SUB)

Max #cars #states #transitions time(s)
1 74/258/44 264/847/168 2/36/4
2 102/578/44 362/1817/168 2/125/4
10 326/-/44 1146/-/168 9/>600/4

100 2846/-/44 9966/-/168 356/>600/4

The examples show that the symbolic checking with state
subsumption scales well with increasing parameter ranges,
while symbolic checking with state equivalence only scales in
some cases and can even be worse than explicit-state analysis.
Evaluating further examples is necessary to study the effects
in more detail and is planned for future work.

VIII. RELATED WORK

Wang et al. describe the symbolic play-out of LSC spec-
ifications by a mapping to a constraint logic program [27].
They support the symbolic interpretation of scenarios variables
and lifeline bindings with unboundedly many components.
We do not consider symbolic values for role/lifeline bindings,
whereas they do not consider changing object properties.

Roychoudhury et al. describe the analysis of Symbolic
Message Sequence Charts (SMSCs) [28], which can also rep-
resent the interaction between unboundedly many components.
They consider that MSCs can be executed sequentially as
specified by a High-level Message Sequence Chart (HMSC).
The interplay of multiple concurrently active and progressing
scenarios as in LSCs/SML is not considered.

Harel et al. describe a symbolic analysis and composition
approach of Behavioral Programs (BPs) [30], which share
some of the core concepts of LSCs/SML [31]. In their work
not the entire program is executed symbolically, but rather a
stepwise compositional verification and composition process
is described, which is supported by an SMT-Solver.

Cimatti et al. describe a feasibility checking method for
Message Sequence Charts (MSCs) of hybrid systems based on
SMT solving and k-induction [29]. They, however, only check
single MSCs, whereas our approach considers the interplay of
multiple scenarios.

Zurowska and Dingel describe the symbolic execution of
UML-RT state machines [22] for analyzing invariants and
reachability properties. It is based on mapping the UML-RT
state machines to functional finite state machines, for which
a symbolic execution procedure is described. Similar to our
approach, also subsumption checking of states is suggested
for backtracking in the symbolic state exploration.

The symbolic execution of state machines is also described
by Thums et al. [32]. Rapin describes the symbolic analysis
of Input-Output Transition Systems [20].

IX. CONCLUSION

We described a technique for the symbolic execution of
scenario-based specifications in SML that interprets integer
message parameters and variables symbolically and show
how it can be used for symbolic realizability checking. The
evaluations show that in combination with state subsumption,
the technique scales well with growing parameter ranges.

The approach could be integrated into an existing tool that
is capable of building play-out graphs for SML specifications
with rich language features, thus achieving better scalability
w.r.t. integer parameters and attributes over large ranges while
not impairing support for other language features.

In future work, we will consider using the technique for the
analysis of timed specifications and study further approxima-
tion techniques (some ideas appear in [26]). Another goal is
extending the work for controller synthesis and checking other
notions of realizability. Also, this approach can be combined
with previous work [33] for synthesizing test cases.
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