
ScenarioTools � A Tool Suite for the

Scenario-based Modeling and Analysis of Reactive

Systems

Joel Greenyera, Daniel Gritznera, Timo Gutahra, Florian Königa, Nils
Gladea, Assaf Marronb, Guy Katzc

aLeibniz Universität Hannover, Germany
bWeizmann Institute of Science, Israel

cStanford University, USA

Abstract

ScenarioTools is an Eclipse-based tool suite for the scenario-based mod-
eling and analysis of reactive systems. ScenarioTools especially targets
the modeling and analysis of systems where the behavior of the components
is sensitive to changes in the component structure that can occur at run-time.
For example, in a system of communicating cars, the cars' relationships can
change due to their movement and in�uence how cars must interact. The
modeling in ScenarioTools is based on the Scenario Modeling Language
(SML), an extended variant of Live Sequence Charts (LSCs). For modeling
structural changes and conditions, graph transformation rules can be com-
bined with SML. The speci�cations are executable and can be analyzed by
simulation. ScenarioTools further supports a formal synthesis procedure
that can �nd speci�cation inconsistencies or prove the speci�cation's realiz-
ability. In this article, we illustrate the features of ScenarioTools by an
example and describe its architecture.

Keywords:
reactive systems, dynamic system structure, scenarios, graph
transformation, analysis, inconsistency, realizability, controller synthesis

1. Introduction

In this article, we present ScenarioTools, an Eclipse-based tool suite
for the scenario-based modeling and analysis of reactive systems.

Preprint submitted to Science of Computer Programming July 6, 2017

Reactive systems are systems that continuously react to external in-
puts [1]. We �nd them especially in the form of cyber-physical systems,
which are systems of networked embedded components that control physical
processes and interact with users or other systems. Such systems ful�ll com-
plex tasks in manufacturing, transportation, or logistics. There are a number
of characteristics that make the development of such systems challenging.

First, (1) the systems are often safety-critical, which requires extra rigor,
and safety concerns must be considered already during the early design.

Second, (2) the system goals can usually not be ful�lled by the software
alone, but only in collaboration with its physical/mechanical environment.

Third, (3) in systems like communicating cars or adaptive production sys-
tems, the relationships between components change at run-time. This may
change the roles and responsibilities of the system components, and in�u-
ences how these components interact. Their interaction, in turn, a�ects the
system's structure. In a system of communicating cars, for example, the sys-
tem structure changes due to the movement of cars (physical relationships),
or due to the assignment of leader- and follower roles in a convoy (virtual
relationships). A car's software must then behave di�erently depending on
the tra�c situation and its role in it. The software can also in�uence how the
system structure evolves, for example by advising the driver or by controlling
the car. We call such systems structurally dynamic systems, as opposed to
static systems, where the component structure does not changed at run-time.

To master these challenges, we propose a formal speci�cation method
that combines scenario-based modeling and graph transformation rules :

Scenario-based modeling allows engineers to capture speci�cations in a
way that is very close to how they would naturally conceive and communicate
the requirements, i.e., by describing, in separate stories, how the system may,
must, or must not react to certain events. ScenarioTools supports the
scenario-based modeling with the Scenario Modeling Language (SML), which
is a textual variant of Live Sequence Charts (LSCs) [2].

SML speci�cations are executable via an extension of the play-out algo-
rithm [3], originally invented for LSCs [4, 2]. This algorithm can be used to
simulate the system execution and to analyze the interplay of the scenarios.

SML extends LSCs with the support for modeling environment assump-
tions in the form of assumption scenarios. Together with guarantee scenar-
ios, which describe the desired behavior of the software/system, they form
an assume-guarantee speci�cation. This permits meaningful reasoning on
the collaboration of the software and its environment (cf. (2) above).

2

Graph transformation rules (GTRs) are an intuitive formalism for
modeling conditions and transformations of models. The model of interest
in our case is the structure of system and environment components. GTRs
can be integrated with SML to express under which conditions of the compo-
nent structure certain events are possible to occur, and how they change the
component structure when they occur. This provides rich means for modeling
aspects of structural dynamism (cf. (3) above). For modeling and executing
GTRs, ScenarioTools integrates Henshin, an Eclipse-based tool set for
the modeling, execution, and analysis of graph transformation systems [5, 6].

Since simulation cannot prove the absence of �aws and extra rigor is re-
quired for addressing safety concerns (cf. (1) above), we developed a con-
troller synthesis and realizability checking algorithm. This algorithm is
based on ScenarioTools' capability of building a play-out graph, a state-
transition graph of all possible play-out executions. A multi-level hashing
approach allows for a fast exploration and memory-e�cient representation
of states. The algorithm considers the play-out graph as an in�nite game
played by the system against the environment [7]. It checks whether there
exists a strategy for the system to choose system-controllable transitions such
that, no matter what environment-controllable transitions the environment
chooses, the resulting path, i.e., execution of the system, will satisfy the SML
speci�cation. If no such strategy exists, the algorithm will produce a counter-
strategy that shows how the environment can force the system to violate the
speci�cation. ScenarioTools supports the interactive simulation of such
a counter-strategy, which helps in understanding the speci�cation �aw.

In this article, we illustrate the modeling, simulation and synthesis fea-
tures of ScenarioTools. This article extends our tool demo paper [8]1 with
an extended example and a description of the execution engine architecture.

The key novelty w.r.t. previous work [9] is the support for formal con-
troller synthesis for speci�cations that combine scenarios and GTRs.

Structure: Background and related work appears in Sect. 2, Scenario-
Tools modeling and analysis features in Sect. 3 and 4, and architecture
details in Sect. 5. We give evaluation results in Sect. 6 and conclude in Sect. 7.

1tool demo video: https://youtu.be/p9mo6FJvqEE)

3

https://youtu.be/p9mo6FJvqEE

2. Background and Related Work

There exist a number of approaches for the formal modeling and analysis
of use cases and scenarios. See an overview by Liang et al. [10].

Live Sequence Charts (LSCs) [11], allow us to distinguish between scenar-
ios that must be possible to occur in the system (existential scenarios) as well
as scenarios that must be satis�ed by every execution of the system (univer-
sal scenarios). By using modalities for messages, LSCs can express whether
events may, must, or must not occur. Also, speci�cations of universal LSCs
are executable via the play-out algorithm [4, 2].

Many approaches exist for checking LSC speci�cations for inconsistencies,
or synthesizing implementations from them [12, 13, 14, 15, 16, 7].

For several years, we2 have developed the ScenarioTools to evalu-
ate our extensions to the scenario-based modeling methodology inspired by
LSCs. We have recently switched from a graphical syntax [3, 9] to a textual
language, which we call the Scenario Modeling Language (SML). Besides
the di�erence between the graphical vs. textual syntax, SML extends the
concepts of LSCs by an explicit concept for modeling environment assump-
tions through assumption scenarios [3]. Another SML feature for modeling
environment assumptions is to separate environment events that can occur
spontaneously (e.g. �user presses the 'co�ee' button on a co�ee machine�)
from non-spontaneous environment events that can occur only in reaction to
other events (e.g. �user takes co�ee cup only after machine releases cup�).

Tools related to ScenarioTools are the Play Engine [2] and the
PlayGo tool [17]. The Play Engine and PlayGo support the interac-
tive play-in of scenarios, which is not supported by ScenarioTools. Also
PlayGo supports a controlled natural speci�cation language [18]. PlayGo
was furthermore extended by formal synthesis algorithms and the capabil-
ity to interactively simulate counter-strategies [19]. This approach, however,
is limited, as only a subset of LSC constructs is mapped to an external
analysis framework; parameterized messages, dynamic polymorphic scenario
bindings [20], or dynamic object structures are not supported. This limits
the Play Engine and PlayGo w.r.t. the challenges mentioned above.

2The current version of ScenarioTools was developed by the �rst-listed authors
from the Leibniz Universität Hannover. Examples were developed by all authors. The
ScenarioTools architecture was inspired by a previous version of the tool, which was
developed by the �rst-listed author, C. Brenner, and V. Panzica La Manna [3].

4

By contrast, the ScenarioTools' synthesis supports SML speci�cations
with parameterized messages, dynamic polymorphic scenario bindings, and,
especially, speci�cations for structurally dynamic systems.

3. Scenario-based Modeling in ScenarioTools

3.1. Example Overview

Our example is an advanced car-to-x driver assistance system that shall
help cars e�ciently pass obstacles that create a narrow passage by blocking
one lane of a two-lane road (see top of Fig. 1). Cars approaching on the
blocked lane must stop if cars approach the obstacle from the other direction.

One scenario (Scenario 1 in Fig. 1) says that when a car approaches the
obstacle on the blocked lane, it must show either a STOP or GO signal to
the driver, and it must do so before the car �nally reaches the obstacle.

approaching
obstacle on narrow

passage lane
obstacle control

obstacle control

1

2

approaching an obstacle on the blocked lane

show stop
or go

3

before
obstacle is
reached

Scenario 1 “Dashboard of the car approaching
on the blocked lane shows STOP or GO”

1

entering
(Dis)Allowed2

register 4

is narrow area
free? (any car
registered
from other
side?) obstacle control

3

5
show stop

or go

Scenario 2 “Control station checks for car approaching
on the blocked lane whether entering is allowed or not”

approaching
obstacle on
blocked lane

approaching an obstacle on the blocked lane

Figure 1: Car-to-X example overview

A second scenario (Scenario 2 in Fig. 1) re�nes and extends the behavior
described by the �rst: when a car approaches the obstacle on the blocked
lane, it must register at the obstacle control station. When another car has
previously registered for approach from the opposite direction, the obstacle
control must disallow the car approaching on the blocked lane to enter and
the car must show the STOP signal to the driver. Otherwise, the obstacle
control must allow the car to enter and the car must show the GO signal.

5

The example shows how a non-deterministic choice between showing
STOP or GO in Scenario 1 is determined by a condition in Scenario 2.

To specify the system further, more scenarios are added. The system
must satisfy the requirements expressed by all the scenarios.

3.2. Modeling Overview

An SML speci�cation de�nes how objects in an object model may, must, or
must not interact. These objects are instances of a class model, which an SML
speci�cation references. A run-con�guration maps an SML speci�cation to a
particular object model, and it can be read and executed by the Scenario-
Tools execution engine for simulation and formal analysis. See Fig. 2.

run configuration

SML specification

execution engineobject model

class model

specification scenario {

}

references

references

instance of references

reads and
executes

ScenarioTools

Figure 2: Overview over the involved models for execution

3.3. Class and object model

In ScenarioTools, class models are modeled in Ecore of the Eclipse
Modeling Framework (EMF). EMF allows us to create instances of such
models. The Car-to-X class model (Fig. 3) models street systems that can
contain cars, street sections, and other elements. Street sections have lanes
that consist of lane areas, and cars can be in lane areas. Furthermore, there
can be obstacles on lane areas, which can be controlled by an obstacle control.

3.4. SML Speci�cation

The �rst part of the Car-to-X speci�cation is shown in Listing 1. It shows
the speci�cation CarToX, which imports the car-to-x.ecore �le that contains
the cartox package. In the following, we explain the language concepts.

3.4.1. Controllable and uncontrollable classes

The SML speci�cation �rst de�nes which classes of objects are control-
lable (lines 7-10); all others are uncontrollable. Controllable classes repre-
sent components for which we specify the (software) behavior. Here, this is

6

Figure 3: Car-to-X speci�cation class model (Ecore class diagram)

the car and the control station for an obstacle that blocks one street lane.
Uncontrollable classes model environment entities or sensors or actuators.
Environment objects are the source of environment events. In our case, the
class Environment is an abstraction of the car's sensors. For example, the
environment can issue events about the movement of cars to the next lane
area. In the real system, wheel sensors or a GPS may send such an event.

3.4.2. Collaborations, roles, and scenarios

A speci�cation contains one or more collaborations. Each collaboration
describes how objects interact in a particular situation. A collaboration
de�nes roles that represent objects. Furthermore, a collaboration contains
guarantee scenarios and assumption scenarios. Guarantee scenarios describe
how the controllable objects may, must, or must not react to environment
events. Assumption scenarios describe what can, will, or will not happen in
the environment or how the environment will react to the system.

The �rst two guarantee scenarios in Listing 1 model the scenarios in Fig. 1.
CarsMustNotCrash says that no crashes must occur in the narrow passage.

Objects interact by sendingmessages. A message has one sending and one
receiving object and refers to an operation de�ned for the receiving object.
We consider synchronous messages, where both the sending and receiving of

7

1 import "car-to-x.ecore"
2
3 specification CarToX {
4
5 domain cartox // reference Ecore package
6
7 controllable {
8 Car
9 ObstacleBlockingOneLaneControl
10 }
11
12 non-spontaneous events {
13 Car.setApproachingObstacle
14 ...
15 }
16
17 collaboration ApproachingObstacleOnBlockedLane{
18
19 static role Environment env
20 dynamic role Car car
21 dynamic role Dashboard dashboard
22 dynamic role ObstacleBlockingOneLaneControl obstacleControl
23
24 // Scenario 1
25 guarantee scenario DashboardOfCarApproachingOnBlockedLaneShowsStopOrGo
26 bindings [
27 dashboard = car.dashboard
28]{
29 env->car.setApproachingObstacle(*)
30 alternative{
31 strict requested car->dashboard.showGo()
32 } or {
33 strict requested car->dashboard.showStop()
34 }
35 env->car.obstacleReached()
36 }
37
38 // Scenario 2
39 guarantee scenario ControlStationAllowsCarOnBlockedLaneToEnterOrNot
40 bindings [
41 obstacle = car.approachingObstacle
42 obstacleControl = obstacle.controlledBy
43 dashboard = car.dashboard
44]{
45 env->car.setApproachingObstacle(*)
46 strict requested car->obstacleControl.register()
47 alternative [obstacleControl.carsRegisteredOnNarrowPassageLane.isEmpty()]{
48 strict requested obstacleControl->car.enteringAllowed()
49 strict car->dashboard.showGo()
50 } or [!obstacleControl.carsRegisteredOnNarrowPassageLane.isEmpty()]{
51 strict requested obstacleControl->car.enteringDisallowed()
52 strict car->dashboard.showStop()
53 }
54 }
55
56 guarantee scenario CarsMustNotCrash {
57 env->car.crashInNarrowPassage()
58 violation [true]
59 }
60 ... // continues in Listing 2

Listing 1: Car-to-X SML speci�cation excerpt part 1 (speci�cation scenarios)

8

a message together form a single message event. Message events sent from
controllable objects are called controllable events or system events ; message
events sent from uncontrollable objects are called uncontrollable events or
environment events. System events can represent the sending of a software
message or a signal sent to an actuator. Environment messages represent
events in the environment or an external signal sent to the system.

A message event can furthermore have a side-e�ect on the object model,
like changing attribute values and reference links of objects. This can rep-
resent the changing of reference or variable values in the system's software
or the change of the state of the environment. For example, an event car-
MovesToNextArea, sent from the environment to the car, has the side-e�ect
of changing the car's inArea reference to point to the next lane area. Such
side-e�ects can be modeled by graph transformation rules (see Sect. 3.5).
Moreover, message events that refer to operations of the form set〈Prop〉(p)
will cause the value for attribute/reference 〈Prop〉 of the receiving object to
change to the value that the message event carries for p.

The side-e�ect of a message event can also be the creation or destruc-
tion of objects in the object model, but this is currently not supported by
ScenarioTools. For modeling most systems, this poses no limitation,
since object creation and destruction can also be modeled by other means,
for example by a pool of objects that can be �agged as �dead� or �alive�.

An in�nite sequence of object model states and message events is called a
run of a system. Each scenario either accepts or rejects a run. A run is valid
w.r.t. a speci�cation if and only if it is accepted by all guarantee scenarios
or it is rejected by at least one assumption scenario, i.e., the system must
satisfy the requirements in environments that ful�ll the assumptions.

An SML scenario rejects a run if and only if the run causes a safety
violation or liveness violation (see Sect. 3.4.4) in the scenario. Conversely, a
scenario accepts a run if it is never activated or progresses without violations.

3.4.3. Scenario activation and progress

On the occurrence of a message event that corresponds to the �rst message
in a scenario, an active copy of that scenario, also called active scenario, is
created. On the occurrence of further message events that correspond to the
subsequent messages in the scenario, the scenario progresses. SML supports
alternative, parallel, and loop constructs within the scenarios to control the
�ow of progress. The state of progress is de�ned by the set of messages
that the scenario waits for to occur next. We call these messages enabled.

9

There can be multiple enabled messages if the scenario contains alternative
or parallel fragments. When the active scenario progresses until its end, the
active scenario terminates and is discarded. There can be multiple active
scenarios at the same time, even multiple active copies of the same scenario.

3.4.4. Message modalities, violations, and interrupts

The messages in the scenarios can have the modalities strict and requested.
The strict modality allows us to express at which state of progress of the
scenario the order of events as described by the scenario must not be violated.
More speci�cally, when a strict message is enabled, then no message event
must occur that corresponds to a message in the same active scenario that
is not currently enabled. Otherwise, it is a safety violation. If, instead,
there are no strict messages enabled, message events that are expected only
elsewhere in the active scenario are allowed, but lead to the termination of
the active scenario. Such a termination is also called an interrupt.

The modality requested indicates points where the scenario must progress.
If a requested message is enabled forever, this is called a liveness violation.

Safety violations can also be caused by violation expressions. If in an
active scenario the progress reaches a violation expression and the condition
evaluates to true, this is also a safety violation. If the condition evaluates
to false, the active scenario progresses before the next message event occurs.
Similarly, interrupt expressions can lead to the interrupt of the active scenario.

3.4.5. Roles and dynamic binding

Each message in a scenarios has a sending and a receiving role. Roles can
be static or dynamic. Each static role has a �xed binding to one object in
the object model, which is con�gured in the run-con�guration (see Listing 3).
A dynamic role can have a di�erent binding for each active scenario. The
binding of the sending and receiving roles of the �rst message are given
through the occurrence of the message event that activates the scenario.
The bindings of the other roles in the scenario are de�ned through binding
expressions that refer to properties of objects bound to other roles. This
enables us to specify behavior that is sensitive to the current state of the
object model. All roles are bound at the time of scenario activation.

3.4.6. Assumption scenarios and non-spontaneous events

Listing 2 shows two assumption scenarios. The �rst one describes that
after a car moved onto a new area, and the area after this now current

10

1 ... // continued from Listing 1
2 assumption scenario ApproachingObstacleOnBlockedLaneAssumption
3 bindings [
4 currentArea = car.inArea
5 nextArea = currentArea.next
6 obstacle = nextArea.obstacle
7]{
8 env->car.carMovesToNextArea()
9 interrupt [obstacle == null]
10 strict requested env->car.setApproachingObstacle(obstacle)
11 } constraints [
12 forbidden env->car.carMovesToNextArea()
13]
14
15 assumption scenario DriverObeysStopSignal {
16 car->dashboard.showStop()
17 car->dashboard.showGo()
18 } constraints [
19 forbidden env -> car.carMovesToNextArea()
20 forbidden env -> car.carMovesToNextAreaOnOvertakingLane()
21]
22 } // ... additional collaborations and scenarios
23 }

Listing 2: Car-to-X SML speci�cation excerpt part 2 (assumption scenarios)

area has an obstacle, then the car will eventually receive the event that it is
approaching that obstacle (env->car.setApproachingObstace(obstacle)). The
scenario also has a forbidden message in its constraints section, which models
message events that must not occur while the scenario is active. If forbidden
message events do occur, this is a safety violation. Here, it says that a second
carMovesToNextArea will not occur before the setApproachingObstace event.

Reference or attribute values of objects are changed as a side-e�ect of
messages pre�xed with set. In this example, when setApproachingObsta-
cle(obstacle) is received by a car, the car's value for the reference approachin-
gObstacle is set to the object carried for the obstacle parameter. By setting
this attribute, we can specify at which obstacle control the car shall register.

Another form of environment assumptions are non-spontaneous events.
These are environment events that only occur in reaction to other events. In
the SML speci�cation, we can list operations of classes in a corresponding
section (Listing 1, lines 12-15). Message events that refer to operations listed
there are called non-spontaneous and it is assumed that they will occur only
when a corresponding message is enabled in an active assumption scenario.

By adding the operation Car.setApproachingObstacle to the non-
spontaneous events section, and in combination with the assumption scenario
ApproachingObstacleOnBlockedLaneAssumption, we can express that a setAp-
proachingObstace event can indeed only occur when the car has moved to a

11

lane area that is followed by another lane area with an obstacle on it.
The last assumption scenario models the assumption that a car will not

advance to the next lane area after the STOP signal was shown to the driver
and before the GO signal is shown again, i.e., drivers obey the STOP signal.

3.5. SML and Graph Transformation Rules

Message events can be associated with graph transformation rules
(GTRs). A GTR describes a transformation of the object model that is
the side-e�ect of an occurrence of the message event, and it also describes a
condition under which the occurrence of the message event is possible. De-
pending on whether the GTR corresponds to a system or environment event,
the condition is either a guarantee property or an assumption property. I.e.,
if a system or environment event occurs that is forbidden by a corresponding
GTR, then this is a safety violation in the guarantees or assumptions.

Figure 4 shows a rule from the Car-to-X example. A GTR corresponds
to a message event if its name is equal to the name of the message event's
operation. Furthermore, the GTR must have two in-parameters correspond-
ing to the message event's sending and receiving objects. If the operation is
parameterized, the GTR must have further corresponding in-parameters.

Background: GTR parameters are a feature of Henshin. Each parameter
corresponds to a node in the GTR. Before applying the GTR, bindings for
the in-parameters must be provided. The GTR is applicable if a match of the
GTR's left-hand-side (lhs) graph can be found in the host model where the
nodes corresponding to in-parameters are bound to the speci�ed objects. A
GTR application consists in modifying the objects matched by the GTR's lhs
such that it matches the GTR's right-hand side graph. For details see [5, 6].

A message event with a corresponding GTR can only occur if the GTR is
applicable in the current object model for the in-parameters that are provided
by the message event as described above. Upon the occurrence of the message
event, the GTR is applied. If there are multiple matches of the GTR in the
current object model, one is selected non-deterministically.

The example GT rule in Fig. 4 expresses that on the occurrence of the
event carMovesToNextArea, the receiving car's inArea link will change to ex-
press that the car moves to the next area relative to its current area. More-
over, the rule constrains that the event cannot occur, for example, when the
next lane area is occupied an obstacle. Also, the car cannot advance to the
next lane area if it is following a car that still resides on the same lane area.

12

«forbid#3»

approaching

followedBy
«forbid#1»

«forbid#4»

currentLane:Lane

 Rule carMovesToNextArea (in sender:Environment, in receiver:Car)

Figure 4: A GT rule that describes when and how a car moves to the next lane area.

There can also be GTRs without side-e�ect. The GTR in Fig. 5 models
the condition under which message events env->car.crashInNarrowPassage()
can occur, namely when a cars approaches another car in a narrow passage.

Figure 5: The condition for env->car.crashInNarrowPassage() events modeled as a GTR.

3.6. Run con�guration

The run-con�guration for the Car-to-X example is shown in Listing 3. It
refers to the CarToX SML speci�cation and an object model in the �le Street-
SectionWithObstacleAndTwoCars.xmi. The run-con�guration also speci�es the
binding of all static roles to objects in the object model. Here the role env in
collaboration CarsRegisterWithObstacleControl is mapped to the object env.

4. Simulation and Realizability Checking

4.1. Simulation

ScenarioTools supports the execution and simulation of the
SML+GTR speci�cations, based on an extended play-out algorithm [2, 3].

13

1 import "../car-to-x.sml"
2 configure specification CarToX
3 use instancemodel "StreetSectionWithObstacleAndTwoCars.xmi"
4
5 rolebindings for collaboration CarsRegisterWithObstacleControl {
6 object StreetSectionWithObstacleAndTwoCars.env plays role env
7 }

Listing 3: Run con�guration

4.1.1. The ScenarioTools extension of the play-out algorithm

The algorithm repeatedly selects and executes events based on the cur-
rently active scenarios (see Alg. 1). Initially, there are no active scenarios.
The execution of an event entails the initialization, progress, and termination
of scenarios, and performing the event's side-e�ect on the object model.

System step: If there are system message events that correspond to en-
abled requested messages in active guarantee scenarios, it is the system's
turn (l. 2). All of these system events are candidates for execution, unless
they are blocked by active guarantee scenarios or disallowed by their corre-
sponding GTR (l. 3). If the resulting candidate event set is not empty, one
of them is chosen for execution (l. 5) and the process is repeated. Otherwise,
this implies a safety violation of the guarantees (l. 7). The algorithm then
continues with environment steps to see whether the environment forced a
guarantee violation only at the expense of a later assumption violation.

Environment step: If it is not the system's turn, the system waits for
the next environment event. The candidate events are such environment
events that are spontaneous or corresponds to an enabled message in an
active assumption scenario (l. 9). Furthermore, the event must not lead to
a violation in any active assumption scenario and, if a GTR is associated
with that event, the GTR must allow the event to occur (l. 10). If no such
event exists, it means that violation of the assumptions and the algorithm
terminates. Otherwise, an environment event is selected and executed (l. 12).

Assumption/guarantee violations: During event execution, an environ-
ment or system event may cause a violation of a guarantee resp. assumption
scenario. The algorithm terminates on assumption violations, but continues
on guarantee violations in order to check (as above) whether the environment
forced a guarantee violation at the expense of a later assumption violation.

Event selection: The event selection (selectFrom()) is non-deterministic.
It can be a user choice in the interactive simulation (cf. Sect. 4.1.2); for con-
troller synthesis / realizability checking, all choices are explored (cf. Sect. 4.2).

14

Algorithm 1 Play-out event selection and execution
1: ΣSys = System message events that correspond to enabled requested messages

in guarantee scenarios
2: if ΣSys 6= ∅ then // system step:
3: Σex = ΣSys\ Message events that are blocked by an active guarantee sce-

nario or disallowed by a corresponding GTR.
4: if Σex 6= ∅ then

5: σex = selectFrom(Σex); perfromStep(σex); goto 1
6: else // Safety-violation occurred in guarnatees
7: goto 9 // Cont. env. steps, check for subseq. assumption violation.

8: else// environment step:
9: ΣEnv = Environment message events that are spontaneous or correspond

to enabled messages in assumption scenarios.
10: Σex = ΣEnv\ Message events that are blocked by an active assumption

scenario or disallowed by a corresponding GTR.
11: if Σex 6= ∅ then

12: σex = selectFrom(Σex); perfromStep(σex); goto 1
13: else

14: terminate(�Assumption violation occurred�)

4.1.2. The ScenarioTools simulation UI

The ScenarioTools simulation integrates into the Eclipse debug envi-
ronment (see Fig. 6). The user can select message events in a Message Event
Selection view. The progress of active scenarios is highlighted in the SML
editor. A graphical Simulation Graph visualizes the explored states and sup-
ports jumping back and forth in the execution. The active scenarios and
the object model are displayed in the Debug view. The Variables view shows
active scenario role bindings, scenario variables values, and object properties.

4.2. Realizability Checking via Formal Controller Synthesis

The controller synthesis feature of ScenarioTools allows us to compute
a strategy for the system to react to any sequence of environment events in
such a way that the speci�cation is satis�ed. A speci�cation is realizable if
such a strategy exists and unrealizable otherwise. The synthesis builds a state
graph of all play-out executions, including the changing object models, and
runs a game-solving algorithm on it [7]. If the speci�cation is unrealizable,
the synthesis produces a a counter-strategy of how the environment can force
a violation of the speci�cation.

15

selection of message event

simulation (state) graph

alternative selection
of next message event

inspect role bindings
active scenarios

enabled messages

SML editor

Figure 6: The ScenarioTools simulation perspective.

ScenarioTools supports the simulation of strategies and (counter-)
strategies; the latter is helpful for understanding speci�cation �aws.

Let us assume that in our example, the engineer forgot the assumption
scenario DriverObeysStopSignal. The synthesis can �nd that now the software
cannot avoid crashes of cars, which are forbidden by the scenario CarsMust-
NotCrash. Figure 7 shows how the user would explore the counter-strategy.

Figure 7: The ScenarioTools State Graph for exploring a counter-strategy.

16

5. Software Architecture

The execution and formal analysis capabilities are based on its execution
engine that interprets an SML speci�cation with an object model (cf. Fig. 2).

5.1. Runtime Model

The execution engine consists of a runtime model that re�ects run-time
concepts such as an active scenario or an active scenario's role bindings. The
classes encapsulate the execution logic for the respective run-time concepts,
for example the active scenario class implements a performStep function for
progressing an active scenario for a given message event.

Figure 8 shows a simpli�ed class diagram of the runtime model. We omit
reference names where they are unnecessary. The model references elements
from the run con�guration model, the SML language model, and Ecore.

getExistingSMLState(newSMLState)
getExistingObjectModel(newObjectModel)
getExistingActiveScenario(newActiveScenario)
getExistingRoleBindings(newRoleBindings)

ElementContainer

StaticObjectModel

generateAllSuccessors(smlState)
generateSuccessor(smlState, messageEvent)

SMLStateGraph

performStep(messageEvent)

SMLState

ecore::EObject

performStep(messageEvent, dynamicObjectModel)

ActiveScenarioDynamicObjectModel

RoleBindings

StaticEObjectToRoleMapping

[1] [0..*][0..*][1]

[0..*]

[1]

[1]

[0..*]

[1]

StaticToDynamicEObjectMapping

staticEObject

[1] staticEObject

[1]dynamicEObject

[0..*]
[0..*]

[0..*]

configuration::
Runconfiguration[1]

sml::Scenario

[1]

sml::Role

[0..*]
[1]

sml::Specification

[1]

[0..*][0..*]

sml::Collaboration

[0..*]

startState [1]

[0..*]

Figure 8: The main concepts of the ScenarioTools runtime model (simpli�ed)

The root element of a runtime instance is a state graph that represents
all executions of a run con�guration. A state graph consists of states and
transitions (omitted in the diagram); it provides the operation generateAll-
Successors, which, for a given state, explores all states that result from the
execution of all possible message events in that state (cf. Alg. 1). The state
graph also has a operation generateSuccessor, which explores only one suc-
cessor state. The latter operation is used by the simulation environment.

The generation of a successor state works by copying a given state and ap-
plying the state's performStep operation. When building a state graph, how-
ever, identical states must not occur twice, which means that the generate-
Successor operation must �rst attempt to �nd an identical already explored

17

state, if it exists, and return it. Otherwise, it returns the newly explored
state. More details on this state lookup procedure appear in Sect. 5.2.

A state references a set of active scenarios, which each reference a sce-
nario from the speci�cation. An active scenario references role bindings and
enabled messages (not shown in the diagram) that de�ne its state of progress.
The role bindings map which objects the roles in the scenario are bound to.

A state furthermore references an object model. We maintain di�erent
variants of it: there is one static object model, which is a copy of the initial
object model. In addition, there are dynamic object models, which are the
object models that evolve from the initial object model when applying the
message event side-e�ects to it. A dynamic object model also contains a
mapping between its objects and the objects in the static object model.

This mapping reduces redundancy in the runtime model: two states can
reference di�erent dynamic object models, but can still reference the same
active scenario, since its role bindings refer to the static object model.

Figure 9 shows a simpli�ed instance of the runtime model for three states
of the Car-to-X example. In state s1, has an active copy of the assump-
tion scenario ApproachingObstacleOnBlockedLaneAssumption, due to a pre-
vious occurrence of env->car1.moveToNextArea(). In this active scenario,
the non-spontaneous event env->car1.setApproachingObstacle(o1) is enabled.
State s2 is the successor of state s1 after the occurrence of this event.

s1:SMLState :Transition s2:SMLState :Transition s3:SMLState

:MessageEvent
[env->car1.

setApproachingObstacle(o1)]

:MessageEvent

[car1->o1.register()]

dym1:DynamicObjectModel dym2:DynamicObjectModel

d1:ActiveScenario:sml::Scenario
[ApproachingObstacle-

OnBlockedLane]

:sml::Scenario
[ControlStationAllowsCar-

OnBlockedLaneToEnterOrNot]

[enabled: car1->dashboard.showGo(),
car1->dashboard.showStop()]

c1:ActiveScenario

[enabled: car1->o1.register()]

c2:ActiveScenario
[enabled:

car1->o1.enteringAllowed()]

:RoleBindings
[bind role env to obj env,
bind role car to obj car1,

bind role dashboard to obj car1db]

:RoleBindings
[bind role env to obj env,
bind role car to obj car1,

bind role obstacle to obj o1, ...]

a1:ActiveScenario
[enabled: env->car1.

setApproachingObstacle(o1)]

:sml::Scenario
[ApproachingObstacleOn-
BlockedLaneAssumption]

:RoleBindings
[bind role env to obj env,
bind role car to obj car1,

bind role currentArea to obj area2, ...]

:Transition

:MessageEvent
[env->car1.

moveToNextArea()]

... ...
tar tarsrc tarsrc

Figure 9: Runtime model instance for the execution of the car-to-x example (simpli�ed)

In state s2, the assumption scenario ApproachingObstacleOnBlocked-
LaneAssumption is no longer active, but instead the guarantee scenarios
ApproachingObstacleOnBlockedLane and ControlStationAllowsCarOnBlocked-

18

LaneToEnterOrNot are activated. Also state s2 references another object
model, because of the side-e�ect of the previous message event.

State s3 is the successor of s2 after the occurrence of car1->o1.register().
This event progresses the active copy of ControlStationAllowsCarOnBlocked-
LaneToEnterOrNot (c2), but not the active copy of ApproachingObstacleOn-
BlockedLane (d1), which is shared with state s2. The two active copies c1
and c2 share the same role bindings. Because car1->o1.register() has no
side-e�ect, states s2, s3 reference the same object model.

5.2. State Lookup Procedure

This state lookup involves di�erent lookup methods of the state graph's
element container (Fig. 8), which uses hash tables for an e�cient lookup.

Whenever the successor of a state is explored for a given message event,
�rst, a copy of the state, its dynamic object model, its active scenarios, and
their role bindings is created. Then we invoke the state's performStep op-
eration for the given message event, which applies any side-e�ects on the
dynamic object model, invokes the performStep operation of its active sce-
narios and creates new active scenarios or terminates others.

Next, we invoke the element container's lookup methods. First, we check
whether a dynamic object model that is identical to the copied and changed
one already exists. If so, we reset the state's reference to its dynamic object
model to the existing one. The redundant copy will be garbage-collected.
If an identical dynamic object model does not yet exist, the newly created
dynamic object model is added to the element container's object model hash
table. Second, the same procedure is applied to all of the active scenarios'
role bindings, third, to the active scenarios, and, last, to the state itself.

6. Empirical Results

We show performance results for performing synthesis on variants of the
Car-to-X example to give an impression of the capabilities of the tool.

The speci�cation has 16 scenarios, which describe the cars' behavior when
entering the narrow passage, and the behavior for avoiding a collision.

We considered 8 variants of the situation shown in Fig. 1, with one to four
cars coming from left or right, see left column of Tab. 1. For example, 1-2
means one car coming from the left and two cars coming from the right.

We also tested with two variants of the speci�cation, where the assump-
tion scenario DriverObeysStopSignal is included or not (column 2 of Tab. 1).

19

If it is not included, the crashes cannot be avoided where cars approach each
other, and thus the speci�cation is unrealizable (column 3 of Tab. 1)3.)

Cars Obey STOP? Realizable? Explored States Explored Transitions Synthesis Time (sec.)

0-1 yes yes 26 37 0.1
0-2 yes yes 306 702 1.7
0-3 yes yes 2224 6836 14.2
0-4 yes yes 12280 46392 11.2
1-1 yes yes 784 1748 4.0
1-2 yes yes 10100 29152 61.0
1-3 yes yes 80230 282084 626.3
2-2 yes yes - - -
0-1 no yes 26 37 0.1
0-2 no yes 331 782 2.4
0-3 no yes 2939 9238 19.3
0-4 no yes 20441 77880 166.1
1-1 no no 324 795 1.5
1-2 no no 3879 12973 25.1
1-3 no no 34703 141310 331.4
2-2 no no 424 877 3.0

Table 1: Experimental evaluation of realizability checking di�erent car-to-x examples.
The last three columns show the number of explored states and transitions as well as the
checking times. Measurements were taken on a laptop with 8GB RAM, an Intel Core
i7-2720QM processor at 2,2 Ghz, running Windows 10 and Java 1.8.0_112 HotSpot 64
bit. The Eclipse version is 4.6.2, with EMF version 2.13.0 and Henshin version 1.5.0.

We could not check the realizable case 2-2, because the memory limit of 8
GB was exceeded. The tool performs well for a couple of ten thousand states.
This may seem few�but, note that each state is a complex data structure,
including the object model, and state exploration is a complex operation,
with event selection that may involve multiple GTR matching attempts.

The ScenarioTools website and repository contain examples of other
reactive systems: a safety-critical high-voltage coupling system for electrical
cars [21], a vacuum cleaner robot, an elevator, or a production robot.

3 The Car-to-X project is located at https://bitbucket.org/jgreenyer/
scenariotools-sml-examples/src/master/org.scenariotools.sml.
henshin.example.models2016v2.car-to-x/, the di�erent instance models tested
are located in the subfolder /instance-models/OneStreetWithObstacle. The
synthesis is performed based on the On-The-Fly Büchi game solving algorithm (on a
runcon�g �le, right-click→ScenarioTools Synthesis→On-The-Fly Büchi.

20

https://bitbucket.org/jgreenyer/scenariotools-sml-examples/src/master/org.scenariotools.sml.henshin.example.models2016v2.car-to-x/
https://bitbucket.org/jgreenyer/scenariotools-sml-examples/src/master/org.scenariotools.sml.henshin.example.models2016v2.car-to-x/
https://bitbucket.org/jgreenyer/scenariotools-sml-examples/src/master/org.scenariotools.sml.henshin.example.models2016v2.car-to-x/

7. Conclusions

We introduced ScenarioTools, an Eclipse-based tool suite for for-
mal scenario-based modeling and analysis of reactive systems. Especially,
ScenarioTools targets the modeling of cyber-physical systems that con-
sist of multiple interacting components and have a dynamic system structure.
For modeling these systems, ScenarioTools o�ers the means for model-
ing not only the desired system behavior, but also for modeling environment
assumptions and modeling changes in the system structure. The resulting
speci�cations are executable, and can be analyzed by simulation and formal
controller synthesis. We demonstrated the main features of the modeling lan-
guage and the modeling and analysis tools by the help of a running example.

Acknowledgements

This work is funded by grant no. 1258 of the German-Israeli Foundation
for Scienti�c Research and Development (GIF).

References

[1] D. Harel, A. Pnueli, On the development of reactive systems, in: K. R.
Apt (Ed.), Logics and Models of Concurrent Systems, Springer Berlin
Heidelberg, 1985, pp. 477�498.

[2] D. Harel, R. Marelly, Come, Let's Play: Scenario-Based Programming
Using LSCs and the Play-Engine, Springer, 2003.

[3] C. Brenner, J. Greenyer, V. Panzica La Manna, The ScenarioTools play-
out of modal sequence diagram speci�cations with environment assump-
tions, in: Proc. 12th Int. Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2013), Vol. 58, EASST, 2013.

[4] D. Harel, R. Marelly, Specifying and Executing Behavioral Require-
ments: The Play-In/Play-Out Approach, SoSyM 2 (2003) 82�107.

[5] Henshin website, https://www.eclipse.org/henshin/.

[6] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer, Henshin:
Advanced concepts and tools for in-place EMF model transformations,
in: Proc. 13th Int. Conf. on Model Driven Engineering Languages and
Systems, 2010, pp. 121�135.

21

https://www.eclipse.org/henshin/

[7] J. Greenyer, C. Brenner, M. Cordy, P. Heymans, E. Gressi, Incremen-
tally synthesizing controllers from scenario-based product line speci�ca-
tions, in: Proc. 9th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering 2013, 2013.

[8] J. Greenyer, D. Gritzner, G. Katz, A. Marron, Scenario-based model-
ing and synthesis for reactive systems with dynamic system structure
in scenariotools, in: J. de Lara, P. J. Clarke, M. Sabetzadeh (Eds.),
Proceedings of the MoDELS 2016 Demo and Poster Sessions, co-located
with ACM/IEEE 19th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS 2016), Vol. 1725, CEUR,
2016, pp. 16�32.

[9] S. Winetzhammer, J. Greenyer, M. Tichy, Integrating graph transfor-
mations and modal sequence diagrams for specifying structurally dy-
namic reactive systems, in: System Analysis and Modeling: Models and
Reusability, Vol. 8769 of LNCS, Springer, 2014, pp. 126�141.

[10] H. Liang, J. Dingel, Z. Diskin, A comparative survey of scenario-based
to state-based model synthesis approaches, in: Proc. Int. Workshop on
Scenarios and State Machines: Models, Algorithms, and Tools, SCESM
'06, ACM, New York, NY, USA, 2006, pp. 5�12.

[11] W. Damm, D. Harel, LSCs: Breathing life into message sequence charts,
in: Formal Methods in System Design, Vol. 19, 2001, pp. 45�80.

[12] D. Harel, H. Kugler, Synthesizing state-based object systems from LSC
speci�cations, Foundations of Computer Science 13:1 (2002) 5�51.

[13] Y. Bontemps, P. Heymans, From Live Sequence Charts to State Ma-
chines and Back: A Guided Tour, IEEE Transactions on Software En-
gineering 31 (12) (2005) 999�1014.

[14] S. Uchitel, G. Brunet, M. Chechik, Synthesis of Partial Behavior Models
from Properties and Scenarios, IEEE Transactions on Software Engi-
neering 35 (3) (2009) 384�406. doi:10.1109/TSE.2008.107.

[15] K. G. Larsen, S. Li, B. Nielsen, S. Pusinskas, Scenario-based analysis
and synthesis of real-time systems using Uppaal, in: Proc 13th Conf. on
Design, Automation, and Test in Europe (DATE'10), 2010.

22

http://dx.doi.org/10.1109/TSE.2008.107

[16] D. Harel, I. Segall, Synthesis from scenario-based speci�cations, Journal
of Computer and System Sciences 78 (3) (2012) 970 � 980. doi:10.
1016/j.jcss.2011.08.008.

[17] D. Harel, S. Maoz, S. Szekely, D. Barkan, Playgo: Towards a com-
prehensive tool for scenario based programming, in: Proc Int. Conf. on
Automated Software Engineering, ASE '10, ACM, New York, NY, USA,
2010, pp. 359�360.

[18] M. Gordon, D. Harel, Generating executable scenarios from natural lan-
guage, in: A. Gelbukh (Ed.), Computational Linguistics and Intelligent
Text Processing: 10th Int. Conf., CICLing 2009, Mexico City, Mex-
ico, March 1-7, 2009., Springer Berlin Heidelberg, 2009, pp. 456�467.
doi:10.1007/978-3-642-00382-0_37.

[19] S. Maoz, Y. Sa'ar, Counter play-out: Executing unrealizable scenario-
based speci�cations, in: 2013 35th Int. Conf. on Software Engineer-
ing (ICSE), IEEE, 2013, pp. 242�251. doi:10.1109/ICSE.2013.
6606570.

[20] S. Maoz, Polymorphic scenario-based speci�cation models: semantics
and applications, Software and System Modeling 11 (3) (2012) 327�345.

[21] J. Greenyer, M. Haase, J. Marhenke, R. Bellmer, Evaluating a formal
scenario-based method for the requirements analysis in automotive soft-
ware engineering, in: Proc. 10th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ESEC/FSE 2013, 2015.

23

http://dx.doi.org/10.1016/j.jcss.2011.08.008
http://dx.doi.org/10.1016/j.jcss.2011.08.008
http://dx.doi.org/10.1007/978-3-642-00382-0_37
http://dx.doi.org/10.1109/ICSE.2013.6606570
http://dx.doi.org/10.1109/ICSE.2013.6606570

Required Metadata

Current executable software version

Nr. (executable) Software metadata
description

Please �ll in this column

S1 Current software version 1.0
S2 Permanent link to executables of

this version
http://scenariotools.org/
downloads/update-site/

S3 Legal Software License Eclipse Public License - v1.0
S4 Computing platform/Operating

System
Microsoft Windows, Mac OS X,
Linux

S5 Installation requirements & depen-
dencies

not applicable

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

http://scenariotools.org/
tutorials/

S7 Support email for questions greenyer@inf.
uni-hannover.de,
daniel.gritzner@inf.
uni-hannover.de

Table 2: Software metadata (optional)

24

http://scenariotools.org/downloads/update-site/
http://scenariotools.org/downloads/update-site/
http://scenariotools.org/tutorials/
http://scenariotools.org/tutorials/
greenyer@inf.uni-hannover.de
greenyer@inf.uni-hannover.de
daniel.gritzner@inf.uni-hannover.de
daniel.gritzner@inf.uni-hannover.de

Current code version

Nr. Code metadata description Please �ll in this column
C1 Current code version 1.0
C2 Permanent link to code/repository

used of this code version
https://bitbucket.
org/jgreenyer/
scenariotools-sml/,
examples in https://
bitbucket.org/jgreenyer/
scenariotools-sml-examples/

C3 Legal Code License Eclipse Public License - v1.0
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Java, Eclipse, EMF, Xtext, GEF,
Henshin

C6 Compilation requirements, operat-
ing environments & dependencies

Java 8, Eclipse Modeling Tools
4.7. (Oxygen), EMF, Xtext 2.12,
GEF, Henshin 1.5 (Henshin re-
quires GMF 3.2.1 and M2Eclipse
http://www.eclipse.org/m2e/, see
developer setup documentation
linked below)

C7 If available Link to developer docu-
mentation/manual

http://scenariotools.org/
downloads/download/

C8 Support email for questions greenyer@inf.
uni-hannover.de,
dgritzner@inf.
uni-hannover.de

Table 3: Code metadata (mandatory)

25

https://bitbucket.org/jgreenyer/scenariotools-sml/
https://bitbucket.org/jgreenyer/scenariotools-sml/
https://bitbucket.org/jgreenyer/scenariotools-sml/
https://bitbucket.org/jgreenyer/scenariotools-sml-examples/
https://bitbucket.org/jgreenyer/scenariotools-sml-examples/
https://bitbucket.org/jgreenyer/scenariotools-sml-examples/
http://scenariotools.org/downloads/download/
http://scenariotools.org/downloads/download/
greenyer@inf.uni-hannover.de
greenyer@inf.uni-hannover.de
dgritzner@inf.uni-hannover.de
dgritzner@inf.uni-hannover.de

	Introduction
	Background and Related Work
	Scenario-based Modeling in ScenarioTools
	Example Overview
	Modeling Overview
	Class and object model
	SML Specification
	Controllable and uncontrollable classes
	Collaborations, roles, and scenarios
	Scenario activation and progress
	Message modalities, violations, and interrupts
	Roles and dynamic binding
	Assumption scenarios and non-spontaneous events

	SML and Graph Transformation Rules
	Run configuration

	Simulation and Realizability Checking
	Simulation
	The ScenarioTools extension of the play-out algorithm
	The ScenarioTools simulation UI

	Realizability Checking via Formal Controller Synthesis

	Software Architecture
	Runtime Model
	State Lookup Procedure

	Empirical Results
	Conclusions

