
Chapter 1

Effectiveness of Combinatorial Test
Design with Executable Business
Processes

Daniel Lübke, Joel Greenyer, and David Vatlin

Abstract Executable business processes contain complex business rules,
control flow, and data transformations, which makes designing good tests
difficult and, in current practice, requires extensive expert knowledge. In or-
der to reduce the time and errors in manual test design, we investigated using
automatic Combinatorial Test Design (CTD) instead. CTD is a test selection
method that aims at covering all interactions of a few input parameters. For
this investigation, we integrated CTD algorithms with an existing framework
that combines equivalence class partitioning with automatic BPELUnit test
generation. Based on several industrial cases, we evaluated the effectiveness
and efficiency of test suites selected via CTD algorithms against those se-
lected by an expert and random tests. The experiments show that CTD tests
are not more efficient than tests designed by experts, but that they are a
sufficiently effective automatic alternative.

Key words: Executable Business Processes, Testing, Combinatorial Test
Design, Industrial Case Study, IPOG, AETG

1.1 Introduction

Many organizations rely on executable business processes (XBPs) to orches-
trate distributed services in order to satisfy critical business needs. Therefore,
the correctness of each XBP must be thoroughly validated via tests. How-
ever, complex business rules, process-flow, and data transformations make it
difficult to engineer effective test suites XBPs [11].
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Ideally, to catch all bugs, an XBP should be tested with all possible combi-
nations of input parameter values, but this is intractable in practice. Equiv-
alence class partitioning can help abstract from the single input values and
partition the range for each input parameter into a few sets of values where it
is assumed that the XBP exhibits equivalent behavior. Sometimes, it is then
possible to cover all combinations of the parameters’ equivalence classes. Usu-
ally, however, this will still require too many tests; even with automated tests,
a single XBP test can take up to minutes, and is thus resource-intensive.

In the industrial project Terravis, which develops a process integration
platform between land registers, notaries, and banks throughout Switzer-
land [2], approximately hundred XBPs are constantly improved and extended,
so tests must be designed, maintained, and executed regularly. For efficient
systematic testing, the classification tree generator framework (CTG) [19]
was developed, which combines equivalence class partitioning via classifica-
tion trees [6] with automated generation of BPELUnit [16, 11] tests.

CTG aids testers in defining equivalence classes and selecting and gen-
erating tests. The test selection determines which input messages an XBP
under test receives. Moreover, requirements can be formalized as constraints,
so that also assertions on the output values can be generated automatically.

Selecting a good test set, however, is still a time-consuming, and error
prone expert task. To address this problem, we investigate employing Com-
binatorial Test Design (CTD) [21] to automate the selection of effective and
efficient tests. CTD is a test planning approach which relies on the observa-
tion that whether a software bug is executed, which is necessary for finding
it in a test, usually depends on the interaction of only a few input param-
eters [20, 8]. For example, if a system has three Boolean input parameters,
there are eight (|B×B×B|) tests for the system. All pairwise combinations of
these parameter values, however, would already be covered by five test cases,
for example those with inputs (0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)—
and these would be sufficient for finding any bug that depends on any par-
ticular value combination of any two parameters. When dealing with many
input parameters, but only covering t-wise parameter interactions where t is
small, the reduction of tests w.r.t. testing all possible inputs is significant.

Automatic algorithms exist for synthesizing a sets of test inputs that
cover all t-wise interactions of parameter values, for example the IPOG al-
gorithm [10, 23]. CTD can be combined with expert-based equivalence class
partitioning of input parameters as mentioned above.

Applying CTD for the testing of XBPs is currently not an established nor
researched practice, so we aim to answer the following research questions:

RQ1: What value of t is typically required for CTD tests of executable
business processes in order to be effective?

RQ2: How does the effectiveness and efficiency of the CTD-generated
tests, with different t-values, compare to (a) tests created by ex-
perts, and (b) tests selected randomly?
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In order to answer these questions, we implemented an automated CTD
procedure and conducted an experiment with the industrial XBPs provided
by the Terravis project. Terravis provides many large BPEL processes and is
thus a good candidate for exploring the effects of testing methodologies.

Because the CTG framework and BPELUnit [16, 11] are already in use in
the Terravis project, we integrated CTG with the two most common CTD al-
gorithms, IPOG-C [10, 23] and AETG-SAT [4, 5]. Through the use of BPEL-
Unit, we can easily measure the test case sizes and test coverage with respect
to activities and decisions in the process [15]. We use the latter as a metric
for the effectiveness of a test suite, i.e., its capability of discovering bugs.

To our knowledge, applying CTD to the business process domain is new,
or has not been published previously. The contribution of our paper is, first,
that we show CTD can be applied to XBPs. Second, we present results of
experiments carried out on industrial cases; the results allows practitioners
to judge when and how to apply these methods.

Structure: We introduce preliminaries in Sect. 1.2 and overview related
work in Sect. 1.3. The design and results of our experiments are described in
Sect. 1.4 and 1.5. Finally, we conclude in Sect. 1.6

1.2 Preliminaries

In this section, we explain the basic features of the classification tree generator
framework (CTG) and how we combined it with CTD algorithms.

Suppose the process under test is a simple online shop process modeled
in BPMN as shown in Fig. 1.1. Initially, a customer places an order. The
product may not be available, but if it is, the customer receives an order
confirmation and the freight company receives an order, upon which the
freight company returns a packaging label. At this point, it may still turn
out that the shipment is not possible, for example because the product is out
of stock (and stock-level data was inconsistent). If the shipment is possible,
it is handed to the freight company and an invoice is sent to the customer.

The order placed by the customer is a document that contains different
parameters, like the ID of the ordered product, amount, payment information,
customer ID, etc. Of course it is not possible to test the process for each
possible order, and so we use equivalence class partitioning of the different
input parameters. For example, we assume that different payment methods
(credit card, Maestro, or wire transfer) will lead to different behavior, but
the actual credit card number, for example, does not influence the process’
behavior. Likewise, the process will behave similarly for available products
for which shipment is possible, which shows that there can also be a multi-
dimensional partitioning with interdependencies, for example a shipment can
only be successful when the product is available.
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Fig. 1.1 Simple Online Shop Process

We thus use a classification-tree-based approach [6] for the selection of test
inputs. A classification tree for the online shop process is shown in Fig. 1.2.
It is displayed as a spreadsheet where, below the tree structure that make
the table heading, tests can be configured by selecting from the equivalence
classes resulting from the classification-tree-based partitioning.

Fig. 1.2 Classification Tree for the Example Onlineshop Process used in [19]

For each leaf of the classification tree a corresponding snippet of a BPEL-
Unit [16, 11] test case is created. Then, given a test input selection, a test case
can be generated automatically by composing the corresponding snippets.
Constraints on input and output values can be added to the classification
tree, so that also assertions can be generated automatically. The classifica-
tion tree is not only used to configure parameters of initial input messages,
but can also be used to specify the contents of intermediate messages.
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In current practice, the test selection as in Fig. 1.2 is done by an expert
who requires detailed knowledge of the process in order to select a test set
that is effective and efficient, i.e., will successfully detect bugs, and does so
with few tests. For an average-size XBP, with thousands of possible tests to
choose from, it can take hours to create a good test set; for big processes, with
hundreds of thousands of possible tests, the expert easily looses oversight.

When testing with BPELUnit, the tester has some support in assessing
the quality of a test suite: it is possible to measure how many of the activity
nodes and branches in the process were covered by a test suite. However, such
a measure is only available after running the test suite, and so iteratively
refining the test suite based on these results is time consuming.

Ultimately, we aim to automate the test selection process. For this pur-
pose, we integrated automatic CTD algorithms in the test case selection
framework. In particular, we chose IPOG-C [23] and AETG-SAT [5] for an
experimental comparison: IPOG-C is a variant of the IPOG (In Parameter
Order General) algorithm [10] that is extended to also consider constraints
on possible parameter combinations. Similarly, AETG-SAT is an extension
of the AETG (Automatic Efficient Test case Generator) algorithm [4], that
considers constraints on possible parameter combinations, by employing a
SAT solver. In our case, the constraints on the possible combinations of in-
puts are given through the classification tree or additional, manually added
constraints, e.g. shipment cannot be successful for unavailable product.

IPOG and AETG take a different approach on selecting tests that yield
a full t-wise coverage of the input parameter space. IPOG starts by building
all t-tuples of the first t parameters, and then incrementally extends this set
horizontally, by including more and more parameters, and vertically, adding
more and more tuples as needed, until all t-tuples of all parameters are cov-
ered. AETG, on the other hand, uses a heuristic approach for incrementally
extending a set of test inputs. In each step, a number of new candidate test
inputs is generated, partly randomized, in order to cover as many yet un-
covered t-tuples as possible. Then, one of these candidates that covers most
uncovered t-tuples is chosen to be included in the test set. This process is
repeated until all t-tuples of all parameters are covered. Due to the random
component in AETG, the algorithm may produce different results between
different runs and the same inputs. IPOG, by contrast, is a deterministic
algorithm.

Both algorithms, IPOG and AETG, do not guarantee that the test set
is of minimal size. Also, there are no conclusive studies on which approach
yields the smallest test set, and therefore, we decided to investigate whether
IPOG-C or AETG-SAT creates more efficient test suites in our approach.
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1.3 Related Work

The empirical study of of testing techniques is an important subject [3]. The
testing of business processes, in particular, is becoming increasingly impor-
tant, as more and more business and government processes are automated.
However, applying CTD for XBPs has not been studied previously; we there-
fore overview existing work on CTD in related areas.

Kruse et al. [7] and Puoskari et al. [17] studied the effectiveness and effi-
ciency of applying CTD to test an IT management system at IBM. In particu-
lar, they also combined a classification-tree-based test selection method with
CTD algorithms in a commercial tool, which is now called TESTONA (As-
system Germany GmbH). They compared the classification tree + CTD test
design approach with established testing techniques at IBM for the system
under study, and concluded that the former can improve the effectiveness of
the tests. For measuring the effectiveness of the generated test suites, Kruse
et al. measured the test suites’ abilities to find manually injected faults. In
this paper we instead use activity and branch coverage as a metric for the
test suites’ effectiveness; as future work, we also plan to use measure the
detection rate of faults created via systematic and automatic mutation.

Qi et al. [18] use CTD in combination with automated dynamic exploration
testing of web applications. The CTD approach can be used successfully to
systematically generate interacting inputs for forms, which accelerate the
dynamic exploration.

Kuhn and Reilly [9] conducted an experiment with a browser and server
modules, where they ran tests with different t-levels of AETG against the
software. Because they knew the number of existing bugs, they could check
how many bugs were found with which t-level. For both test sets all bugs
were found with t = 6. For efficiency reasons, the authors recommended
3 <= t <= 6 as an advice.

Kuhn et al. [8] did an empirical study for analyzing fault interactions.
They queried bug databases of how many conditions influenced a defect. The
authors analyzed 7 systems and found that the upper bound of parameter
interactions was also 6.

1.4 Experiment Design

1.4.1 Research Questions

Following the goal-question-metric (GQM) method [1], we formulate our re-
search goal as:
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The purpose of this study is to evaluate the effectiveness and efficiency
of CTD-based testing from the point of view of software testers in the
context of executable business processes.

When aiming to apply CTD in XBP development projects, the main chal-
lenge is to find a suitable t-value and to evaluate the quality of automatically
chosen tests by CTD algorithms compared to expert test designs and random
tests. The latter serve as a control group in our experiment: random tests are
an automated test selection method, which is easy to implement. With some
confidence, it can be assumed that random tests will exercise many different
cases. As such, we refine our goal into the following two research questions:
1. What value of t is typically required for executable business

processes in order to be effective? When projects want to use CTD
they need to know which configuration of the CTD-algorithms will likely
yield the intended results. The higher the t-value is, the more tests are
generated and, thus, the more effective the test set will be. But the tests
will also run longer, which is a critical factor when tests will be included
in continuous builds. However, if the chosen t-value is too low, the tests
will likely not be able to detect defects. Therefore, testers need to be
able to choose an optimum t-value. Therefore, we want to demonstrate
in our experiment, with which t-value most if not all business processes
are tested with 100% test coverage measured as (a) basic activity cover-
age (BPEL equivalent of statement coverage) and (b) decision coverage.
These coverage criteria are not a direct measure for the effectiveness of a
test suite, but a generally accepted effectiveness metric.

2. How does the effectiveness and efficiency of the CTD-generated
tests, with different t-values, compare to (a) tests created by
experts, and (b) a set of tests of equivalent size selected ran-
domly? When deciding whether to use a CTD-based testing approach,
the main question is how such an approach performs compared to a test
selection by an expert and to an easy-to-implement random approach.
Thus, we compare the efficiency of the test suites generated with IPOG-
C and AETG-SAT to those of an expert selection and randomly chosen
test suites with the same size.

1.4.2 Case Selection

For studying the effectiveness of the CTD test case selection algorithms, we
require a set of XBPs with classification trees. We had access to processes
of the Terravis project [2]. Many XBPs in this project are mature, but ex-
tensions, improvements and new processes are released frequently [12]. The
project applies the (yet new) CTG framework for 5 processes, which we in-
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cluded in our experiments. In addition, we used two BPEL processes that
were used as examples for the classification tree generator by Schnelle [19]
for comparison.

Table 1.1 Classification according to Lübke et al. [14] of the processes in this study (1/2)

Online Shop Credit

Approval

Land Register

Notifications

Version - - -

Domain E-Commerce Banking Mortgage Transactions
Geography None None Switzerland

Time 2016 2016 2017

Boundaries - - Cross-Organizational
Relationship No call No call Is being called

Scope Core Core Auxilliary

Purpose Execution Execution Execution
People Involvement None None None

Process Language BPEL 2.0 BPEL 2.0 BPEL 2.0 plus

vendor extensions

Execution Engine Apache ODE1 Informatica ActiveVOS 9.2

Model Maturity Illustrative Illustrative Productive

Basic Activities 19 25 84

Structured Activities 8 12 85

Non-linear Struct.A. 6 14 38

Parameters 33 41·24 27·37·61
Constraints 0 31 35·212

Allowed Configurations 27 52 69888

We compare the different characteristics of the business processes in the
classification table (see Tables 1.1 and 1.2) in a templated structured as
suggested by Lübke et al. [14].

In addition to the main part of the template, we show static BPEL met-
rics and the metrics of the classification trees. Static BPEL metrics include
the number of basic activities, structured activities, and structured activities
without the sequence activity (non-linear structured activities) in order to
show the process sizes. The metrics for the classifications are shown following
the notation in [10]: the parameters of the classification are notated in the
form of xy, which means that there are y parameters with x values.

1.4.3 Data Collection Procedure

Before analyzing and evaluating the results, we describe the testing process
and the tools used for data collection.
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Table 1.2 Classification according to Lübke et al. [14] of the processes in this study (2/2)

Creditor
Transfer

Transfer
Approval

Approver
Process

Depot
Check

Version - - - -
Domain Mortgage Transactions

Geography Switzerland

Time 2017
Boundaries Cross-Organizational Within-Dep.

Relationship Calls another No Call

Scope Core Core Core Auxilliary
Purpose Execution Execution Execution Execution

People Involvement None Partly None None

Process Language BPEL 2.0 with vendor extensions
Execution Engine Informatica ActiveVOS 9.2

Model Maturity Productive Productive Productive Productive

Basic Activities 235 33 30 40

Structured Activities 234 34 37 52

Non-linear Struct.A. 71 9 10 16

Parameters 121·91·52·31·22 32·24 41·32 62·51·24

Constraints 81·72·54·212 28 23 201·131·71
·61·51·23·11

Allowed Configs 7031 27 10 128

Given an XBP to be tested, a test suite is generated as follows. First,
the test designer creates the classification tree for the CTG framework as
described above, including constraints and underlying BPELUnit fragments.

The classification tree is then be filled out. This can be done manually,
a specified number of tests can be automatically generated at random, or
a selection can be generated automatically using two alternative CTD algo-
rithms, IPOG-C or AETG-SAT.

The IPOG-C algorithm can be used with the application developed by
Vatlin [22], which integrates the IPOG-C implementation of the NIST-
ACTS [23] (Advanced Combinatorial Testing System) with the CTG fram-
work. The AETG-SAT algorithm can be used with the help of the generator
developed by Schnelle & Lübke [19].

With a given test selection, the BPELUnit test cases can then be generated
and executed.

During generation we measured the size of the test suite and after test
case execution we measured the coverage metrics. A BPEL process consists
of basic activities as well as structured activities. Basic activities describe
the elementary steps of the process and represent single actions. Structured
activities determine the control-flow and describe the sequence of activities
in BPEL business processes. Structured activities describe conditional and
iterative executions of activities.
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For the assessment of the used procedure, tools and their interaction, this
paper will regard the activity coverage, branch coverage, number of test cases
and number of test activities.

Test coverage was measured by analyzing the process logs extracted from
the BPEL engine as described by Lübke [13]. We calculated two coverage
metrics as described in [15]: (Basic) Activity Coverage calculates the fraction
of executed basic activities within a BPEL process. (Conditional) Branch
Coverage calculates the fraction of branches taken in a test suite. There
are further test coverage metrics defined for BPEL (Handler Coverage and
Link Coverage), which we decided not to use because Activity Coverage and
Branch Coverage should cover all relevant process elements.

1.4.4 Analysis Procedure

For our study we capture the following metrics for every process project:
• Number of Test Cases, Number of Test Activities, Basic Activity Cover-

age, and Branch Coverage for the expert selected test suite,
• Number of Test Cases, Number of Test Activities, Basic Activity Cover-

age, and Branch Coverage for the IPOG-C, t ∈ {1, 2, 3, 4} generated test
suites,
• Number of Test Cases, Number of Test Activities, Basic Activity Cov-

erage, and Branch Coverage for the AETG-SAT, t ∈ {2, 3, 4} generated
test suites,
• Number of Test Cases, Number of Test Activities, Basic Activity Cov-

erage, and Branch Coverage for the randomly chosen test suites, which
have the same size as their IPOG-C, t ∈ {1, 2, 3, 4} counterparts.

For all test strategies with randomness (all randomly chosen test suites
and all AETG-SAT test suites), 20 test suites were generated and the mean
from the measures was computed in order to account for variances.

For classification trees with fewer than 4 parameters, we could not generate
t = 4-level test suites (and their random counterparts). This applies to the
Online Shop and Approver Process.

From these measurements we compute the efficiency of the tests as
Effy(x ) = Cov(x)/|y| with x ∈ {Activity,Branch} being the coverage metric
and y ∈ {TC, TA} being the number of test cases or test activities.

In order to answer our research questions we compared the efficiency of
the different strategies. However, we excluded strategies that did not reach
at least 75% of the maximum achievable coverage, because we deemed such
a low coverage to be too low for practical reasons. Originally we wanted
to use a strict 75% threshold. However, we found that depending on the
classification tree, not 100% coverage could be reached for all processes. As
such we define maximum coverage as the maximal coverage value that can be
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achieved with the provided classification tree. Test case selection strategies
that reach maximum coverage are the most effective ones.

1.5 Results

In this section we present the results of our measurement results and their in-
terpretation with regard to our research questions. Last, we assess the validity
of our results.

1.5.1 Measurements

The measurements gathered as described above are shown in the boxplots in
Fig. 1.3 and Fig. 1.4. Fig. 1.3 shows the activity coverage of the different test
suites and Fig. 1.4 shows the branch coverage.

The boxplots aetgx and ipogx show the values for both AETG-SATt=x

and IPOG-Ct=x algorithms. The random-ipogx plots show the values of the
random test suites with the same number of test cases as the test suite
generated with IPOG-Ct=x.

We can see that the general coverage for both activities and branches is
usually above 75% for all strategies. Only IPOG-Ct=1 and the random test
suites often score near or below this threshold. AETG-SATt=3 and IPOG-
Ct=3 however usually score the maximum coverage.

Tables 1.3-1.9 show more detailed information for each XBP.
The data shows that the classifications for the processes “Approver Pro-

cess” and “Depot Check” are not complete because at least one coverage
metric maximizes at below 100%. Interestingly, the “Depot Check” process
has full basic activity coverage but misses 100% branch coverage. Upon inves-
tigation, it became clear that fault handlers managing exception flow were not
triggered which contain basic activities. Because handlers are not included
in this test coverage metric, the test gap became only apparent in the basic
activity coverage metric.
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Table 1.3 Measurements for the Online Shop process: Because this process has only

3 parameters, no t = 4-level test suites could be generated. 100% Activity and Branch
Coverage is reached by all strategies except the random test suites with the same size as

IPOG-Ct=1. Both the expert and IPOG-Ct=2 selected the most efficient test suite with

9 test cases and 45 test activities each. AETG-SAT created slightly larger test suites for
t = 2. IPOG-C and AETG-SAT create the same-sized test suites for t = 3, which, however,

has no improvement over t = 2. The expert in this case is not the most efficient one because

he designed more test cases than both algorithms with t = 1.
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IPOG-C 1 3 15 100.0 100.0 33.33 33.33 33.33 33.33
IPOG-C 2 9 45 100.0 100.0 11.11 11.11 11.11 11.11
IPOG-C 3 27 135 100.0 100.0 3.70 3.70 3.70 3.70
IPOG-C 4 - - - - 0.25 - - -
Random I1 3 15 84.2 75.0 28.07 25.00 28.07 25.00
Random I2 9 47 100.0 100.0 11.11 11.11 11.11 11.11
Random I3 27 135 100.0 100.0 3.70 3.70 3.70 3.70
Random I4 - - - - - - - -

AETG-SAT 2 10 49 100.0 100.0 10.00 10.00 10.00 10.00
AETG-SAT 3 27 135 100.0 100.0 3.70 3.70 3.70 3.70
AETG-SAT 4 - - - - - - - -
Expert 9 45 100.0 100.0 11.11 11.11 11.11 11.11

Table 1.4 Measurements for the Credit Approval process: The expert does not achieve
100% coverage for this process, although IPOG-C with t ∈ {3, 4} and AETG-SAT with

t ∈ {2, 3, 4} achieve this goal. Also the random equivalences for IPOG-C t ∈ {3, 4} achieve
the same coverage. Interestingly, the most efficient test suite is created by AETG-SAT

with t = 2. For t = 3 AETG-SAT also outperforms IPOG with a smaller test suite on

average and even the randomly generated test suites are more efficient than the IPOG-C
ones because they use fewer test activities with the same amount of test cases. In this case

the expert does not achieve maximum coverage nor the best efficiency value (superseded

by the random equivalent for IPOG-C t = 1 with regard to branch coverage.)
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IPOG-C 1 4 18 88.0 72.7 22.00 18.18 22.00 18.18
IPOG-C 2 8 36 96.0 90.9 12.00 11.36 12.00 11.36
IPOG-C 3 24 111 100.0 100.0 4.17 4.17 4.17 4.17
IPOG-C 4 40 180 100.0 100.0 2.50 2.50 2.50 2.50
Random I1 4 18 80.0 77.3 20.00 19.32 20.00 19.32
Random I2 8 36 94.0 90.9 11.75 11.36 11.75 11.36
Random I3 24 106 100.0 100.0 4.17 4.17 4.17 4.17
Random I4 40 170 100.0 100.0 2.50 2.50 2.50 2.50
AETG-SAT 2 10 42 100.0 100.0 10.00 10.00 10.00 10.00
AETG-SAT 3 22 99 100.0 100.0 4.55 4.55 4.55 4.55
AETG-SAT 4 41 182 100.0 100.0 2.44 2.44 2.44 2.44
Expert 4 18 88.0 72.7 22.00 18.18 22.00 18.18
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Table 1.5 Measurements for the Land Register Notifications process: The expert

scores best with 100% coverage for both measures and the fewest test cases (25) for this
coverage level. IPOG-C and AETG-SAT with t ∈ {2, 3, 4} also achieve 100% coverage for

both measures, which is not reached by any random test suite. Those fail with regard to

branch coverage. IPOG-C and AETG-SAT require more test cases than the expert. IPOG-
C creates a smaller test suite than AETG-SAT for t ∈ {2, 4}, while for t = 3 AETG-SAT

is more efficient.
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IPOG-C 1 6 29 72.6 66.7 12.10 11.11 12.10 11.11
IPOG-C 2 30 140 100.0 100.0 3.33 3.33 3.33 3.33
IPOG-C 3 125 593 100.0 100.0 0.80 0.80 0.80 0.80
IPOG-C 4 401 1959 100.0 100.0 0.25 0.25 0.25 0.25
Random I1 6 33 38.1 35.4 6.35 5.89 6.35 5.89
Random I2 30 162 83.3 76.8 2.78 2.56 2.78 2.56
Random I3 125 684 100.0 93.0 0.80 0.74 0.80 0.74
Random I4 401 2217 100.0 97.7 0.25 0.24 0.25 0.24

AETG-SAT 2 32 152 100.0 100.0 3.08 3.08 3.08 3.08
AETG-SAT 3 124 600 100.0 100.0 0.81 0.81 0.81 0.81
AETG-SAT 4 410 2006 100.0 100.0 0.24 0.24 0.24 0.24
Expert 25 112 100.0 100.0 4.00 4.00 4.00 4.00

Table 1.6 Measurements for the Creditor Transfer process: Both IPOG-C and AETG-

SAT achieve 100% activity and branch coverage for t ∈ {3, 4} but both also fail to achieve
this coverage with t = 2. Interestingly, the expert achieves 100% coverage with less test

cases than both t = 2-level algorithms and thus is the most efficient one to reach maximum

coverage.
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IPOG-C 1 14 133 59.6 59.3 4.26 4.23 4.26 4.23
IPOG-C 2 68 768 99.6 90.7 1.46 1.33 1.46 1.33
IPOG-C 3 268 3151 100.0 100.0 0.37 0.37 0.37 0.37
IPOG-C 4 934 11024 100.0 100.0 4.35 4.35 4.35 4.35

Random I1 14 164 49.6 50.9 3.54 3.64 3.54 3.64
Random I2 68 834 73.5 74.1 1.08 1.09 1.08 1.09
Random I3 268 3244 80.3 78.7 0.30 0.29 0.30 0.29
Random I4 933 11083 93.0 91.7 0.10 0.10 0.10 0.10

AETG-SAT 2 67 747 99.6 90.7 1.49 1.35 1.49 1.35
AETG-SAT 3 279 3234 100.0 100.0 0.36 0.36 0.36 0.36
AETG-SAT 4 968 11434 100.0 100.0 0.10 0.10 0.10 0.10
Expert 35 741 100.0 100.0 2.86 2.86 2.86 2.86
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Table 1.7 Measurements for the Transfer Approval process: The expert missed the

100% coverage goal with this process and scored like IPOG-Ct = 1 97% Activity Coverage
and 85.7% Branch Coverage. All random test suites miss the 100% target as well. IPOG-

C and AETG-SAT with levels t ∈ {2, 3, 4} all reach 100% Activity Coverage and Branch

Coverage. Both IPOG-C and AETG-SAT with t = 2 create the most efficent test suite with
8 test cases and 61 test activities. Coverage cannot increase with higher t-levels. However,

AETG-SAT creates smaller test suites than IPOG-C with these levels.
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IPOG-C 1 4 26 97.0 85.7 24.24 21.43 24.24 21.43
IPOG-C 2 8 61 100.0 100.0 12.50 12.50 12.50 12.50
IPOG-C 3 15 122 100.0 100.0 6.67 6.67 6.67 6.67
IPOG-C 4 23 194 100.0 100.0 4.35 4.35 4.35 4.35
Random I1 4 31 81.8 71.4 20.45 17.86 20.45 17.86
Random I2 8 69 84.8 78.6 10.61 9.82 10.61 9.82
Random I3 15 126 90.9 100.0 6.06 6.67 6.06 6.67
Random I4 23 195 100.0 100.0 4.35 4.35 4.35 4.35

AETG-SAT 2 8 61 100.0 100.0 12.50 12.50 12.50 12.50
AETG-SAT 3 12 95 100.0 100.0 8.33 8.33 8.33 8.33
AETG-SAT 4 22 190 100.0 100.0 4.44 4.44 4.44 4.44
Expert 4 28 97.0 85.7 24.24 21.43 24.24 21.43

Table 1.8 Measurements for the Approver Process: Because this process has only

3 parameters, no 4-level test suites could be generated. Except for IPOG-Ct = 1 and
its random counterpart, which reach 93.33% activity coverage and around 50% branch

coverage, all strategies deliver 100% test coverage and 75% branch coverage. With 6 Test

Cases and 32 Test Activities the expert has selected the most efficient test suite that
delivers the same coverage like the remaining strategies but with fewer test cases. IPOG-C

and AETG-SAT create test suites with the same amount of test cases and test activities

for this process project.
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IPOG-C 1 4 14 93.3 50.0 23.33 12.50 23.33 12.50
IPOG-C 2 10 42 100.0 75.0 10.00 7.50 10.00 7.50
IPOG-C 3 10 42 100.0 75.0 10.00 7.50 10.00 7.50
IPOG-C 4 - - - - 4.35 - - -

Random I1 4 15 93.3 50.0 23.33 12.50 23.33 12.50
Random I2 10 42 100.0 75.0 10.00 7.50 10.00 7.50
Random I3 10 42 100.0 75.0 10.00 7.50 10.00 7.50
Random I4 - - - - - - - -

AETG-SAT 2 10 42 100.0 75.0 10.00 7.50 10.00 7.50
AETG-SAT 3 10 42 100.0 75.0 10.00 7.50 10.00 7.50
AETG-SAT 4 - - - - - - - -
Expert 6 32 100.0 75.0 16.67 12.50 16.67 12.50
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Table 1.9 Measurements for the Depot Check process: The maximum coverage for

activities are 85% meaning that the classification tree is not complete. Both algorithms
regardless of the t-value reach the maximum activity coverage. This is also true for the

random test suites equivalent in size to the IPOG-C t > 1 suites. Only the random test

suite corresponding to IPOG-C t = 1 does not achieve maximum activity coverage. IPOG-C
t = 2 and the expert additionally miss the maximum branch coverage. However, the expert

created the most efficient test suite with regard to branch coverage, while the random test

suite relating to IPOG-C t = 1 is the most efficient test suite with regard to activity
coverage.
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IPOG-C 1 7 45 85.0 79.0 12.14 11.28 12.14 11.28
IPOG-C 2 35 194 85.0 94.7 2.43 2.71 2.43 2.71
IPOG-C 3 81 450 85.0 100.0 1.05 1.23 1.05 1.23
IPOG-C 4 128 726 85.0 100.0 0.66 0.78 0.66 0.78
Random I1 7 38 81.2 77.8 11.61 11.11 11.61 11.11
Random I2 35 193 85.0 100.0 2.43 2.86 2.43 2.86
Random I3 81 454 85.0 100.0 1.05 1.23 1.05 1.23
Random I4 128 726 85.0 100.0 0.66 0.78 0.66 0.78

AETG-SAT 2 35 195 85.0 100.0 2.43 2.86 2.43 2.86
AETG-SAT 3 77 427 85.0 100.0 1.10 1.30 1.10 1.30
AETG-SAT 4 128 726 85.0 100.0 0.66 0.78 0.66 0.78
Expert 8 43 85.0 89.5 10.62 11.18 10.62 11.18
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Fig. 1.3 Activity Coverage of different Algorithms for the analyzed Processes
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Fig. 1.4 Conditional Branch Coverage of different Algorithms for the analyzed Processes
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1.5.2 Interpretation

RQ1 (Required t-Value): For all processes and the given classification
trees that are part of our experiment, both IPOG-C as well as AETG-SAT
generate the maximum coverage at t = 3. Higher t-values have offered no
additional coverage benefits in our dataset. From an efficiency point of view,
t = 2 yields more effective results with often maximum coverage and in
other cases only a small penalty while requiring only a fraction of test cases
compared to t = 3. No process profited from a further increase of t to t = 4;
the test suites become very large without any coverage benefit.

This is in contrast to other types of software (see [9, 8]), where some
defects in certain kinds of applications are only triggered with t = 6. This is
a significant difference because less test cases are required for XBPs to fully
cover the software than with “traditional” software.

RQ2 (Efficiency and Effectiveness): Looking at the data, IPOG-C and
AETG-SAT deliver comparable test coverage for the same t-level. Sometimes
one algorithm scores better, sometimes the other. Better performance is not
bound to any particular process. For one t-level for one given process, one
algorithm can score better than the other, while scoring worse for another
t-level on the same process.

Random test case selection scores worse with regard to both effectiveness
and efficiency across our XBP set, so structured test selection with IPOG-C
and AETG-SAT beats pure randomness. Also IPOG-Ct=1 is not very effec-
tive, but on that low level of effectiveness it is quite efficient.

For industry XPBs, the expert is the most efficient “strategy” – espe-
cially because the expert selection usually reaches maximum possible cov-
erage. Sometimes, however, even the expert fails to achieve the maximum
coverage although this is possible with the given classification tree. Thus,
while being more efficient than IPOG-C and AETG-SAT for the same test
suite size, the expert is not as effective as the automatic test case selection
algorithms.

Both algorithms and experts cannot perform better than the input data:
the testers for three industry processes failed to provide a classification tree
that is sufficient to reach 100% coverage.

During our analysis we observed one property of the current test coverage
metric definitions for BPEL that is distinctively different from the properties
for other programming languages: The power of branch coverage compared
to the power of activity coverage. Usually branch coverage is stricter than
activity coverage (called statement coverage for programming languages.)
However, BPEL allows the modeling of several handler types that are mod-
eled outside the main control-flow and are thus not included in the branch
coverage definition – test managers should be aware of this difference. We ob-
served a lower activity coverage measure in the Depot Check process, where
it was possible to reach 100% branch coverage (e.g., with AETG-SATt=2,3

and IPOG-Ct=2,3) but the maximum activity coverage was 85%. Our anal-
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ysis revealed that this process contains further basic activities in two fault
handlers. Because all branches in the normal process flow were triggered,
branch coverage was 100%, but the basic activities in the handlers were not
executed, thereby lowering activity coverage below 100%.

1.5.3 Evaluation of Validity

Our data set only contains processes from one project and is quite small:
we covered 5 industrial XBPs and 2 synthetic ones. Also for all XBPs only
one expert selected test cases manually, and these were the first processes for
which the CTG framework was applied. Therefore, the results that we obtain
for the expert choices may not be representative.

However, our data set consisted of XBPs of very different sizes, with differ-
ent numbers of constraints and classification tree sizes. Therefore, we think
that our results are still generalizable with regards to chosen t-values and
efficiency.

1.6 Conclusion and Future Work

Our work demonstrates that CTD can be successfully applied to the domain
of executable business processes. We developed a novel testing technique
for executable business processes that combines automatic CTD algorithms
with automatic BPELUnit test generation based on classification trees. We
conducted experiments with industrial processes that indicate that CTD al-
gorithms can replace the expert in the selection of the test cases. For the
processes that we considered, a t-level of 3 for both IPOG-C and AETG-
SAT was always sufficient to reach the maximum coverage that was possible
with a given classification tree.

IPOG-C and AETG-SAT deliver comparable efficiency for a given t-level.
For some processes IPOG-C created smaller test suites than AETGT-SAT
and vice versa.

However, the expert could create test suites that were more efficient, i.e.,
they required less test cases for a given efficiency. The expert also missed the
maximum coverage in some processes. All in all, the automatic selection of
test cases is more reliable but a bit less efficient.

One interesting finding is that in our experiments coverage for XBPs max-
imizes at t = 3 while in other studies the coverage for some types of software
systems maximizes with t up to 6. If further studies strengthen this finding,
an evaluation of differences in the structure of the software should be done
to explain this significant difference.



20 Lübke et al.

From the practitioners’ point of view, our conclusion is follows.
The implementation of the described automated CTD technique within the
Terravis project was successful and our experiments showed that automatic
selection of test cases from test classification trees with IPOG-C and AETG-
SAT meet the requirements of practice.

Especially the huge number of constraints requires algorithms that con-
sider these constraints and can calculate test cases quickly. Both IPOG-C
and AETG-SAT can handle the classification trees of the studied project
well. For all studied processes, t = 3-level covered the possible maximum of
activities and branches in the processes. t = 2-level generates less test cases
and covers more activities/branches per test case but failed to reliably cover
all activities and branches.

Regarding industry usage, test managers need to decide whether efficiency
or maximizing coverage are more important.

While IPOC-C and AETG-SAT are comparable for generating test case
selections, due to the random component within AETG, the result is non-
deterministic and coverage varies between different generation runs, which
might be problematic in industry projects that cannot afford to re-run tests
multiple times but want to save time.

While the expert was able to create more efficient test case selections than
both IPOG-C and AETG-SAT, the expert sometimes missed test cases to
create full coverage. The task of selecting test cases is especially burdensome
if the classification tree becomes large, which is the case with the executable
processes in our study. Therefore, we think that under most circumstances,
the added efficiency by the tester does not outweigh the required effort. How-
ever, the exact characterization of this topic and the required considerations
are left to future work.

An important aspect is the completeness of the classification tree that must
be created manually by the testers: We observed that for some executable
processes the classification tree was incomplete and thus neither the expert
nor any algorithm could achieve 100% coverage. Industry projects require
methods for detecting such problems. In this regard, an automated CTD-
based approach can even help pinpoint the problem: If coverage is below
100% for an automatically generated test set for t = 3, this is a strong
indicator that the problem is an incomplete classification tree. By contrast,
a test expert who is in an hour-long process of improving the test selection
to increase coverage may realize only late that the classification tree is the
problem. Both approaches benefit from using coverage measurement tools
in order to detect missing cases on a technical level and fix this by adding
business-driven equivalence classes to the classification tree.
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1.6.1 Future Work

While we are happy that we could conduct an experiment with industrial
implementations, such possibilities are yet too rare. We would especially like
to see (or helping doing) case studies that can be replicated by others. Having
an even larger executable business process sets is desirable as well.

Replicated case studies will hopefully strengthen our findings but will also
enable better predictions on which t-levels for the different algorithms are ap-
propriate to reach maximum coverage. Future research should identify prop-
erties of processes or heuristics that can predict which t-level is likely sufficient
for achieving maximum coverage for a given classification tree beforehand.

We have also seen that the expert selects more efficient test cases for
executable business processes than the algorithms do. Further research into
why this is the case and extensions or optimizations of the existing algorithms
are a valuable research target in order to further enhance the efficiency of
generated test suites.

Furthermore, we have seen that the current definitions of BPEL test cover-
age are not totally satisfactory: In order to know whether everything process-
flow related has been covered during testing, both basic activity coverage and
branch coverage are required. Extending branch coverage by handler cover-
age would eliminate the problem and make the new metric more powerful
than basic activity coverage. However, even if such an extended metric, the
data-flow code hidden in the executable business processes is not taken into
account. Due to this, we would like to proceed further by incorporating test
coverage metrics that also take the data-flow into account into our research.
Possible effectiveness metrics could be derived by using systematically seeded
faults (mutations) in the process and data-flow dependent metrics.
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14. Daniel Lübke, Ana Ivanchikj, and Cesare Pautasso. A template for sharing empirical
business process metrics. In Business Process Management Forum - BPM Forum

2017, 2017.
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