
Test-Driven Scenario Specification of Automotive
Software Components

Carsten Wiecher
IDiAL Institute

University of Applied Sciences
and Arts Dortmund,

Leopold Kostal GmbH & Co. KG
Dortmund, Germany

carsten.wiecher@fh-dortmund.de

Joel Greenyer
Software Engineering Group
Leibniz Universität Hannover

Hannover, Germany
greenyer@inf.uni-hannover.de

Jan Korte
Chair for Embedded Systems of

the Information Technology (ESIT)
Ruhr-University,

Leopold Kostal GmbH & Co. KG
Bochum/Dortmund, Germany

jan.korte@rub.de

Abstract—The rising complexity of automotive software makes
it increasingly difficult to develop the software with high quality
in short time. Especially the late detection of early errors, such
as requirement inconsistencies and ambiguities, often causes
costly iterations. We address this problem with a new require-
ments specification and analysis technique based on executable
scenarios and automated testing. The technique is based on
the Scenario Modeling Language for Kotlin (SMLK), a Kotlin-
based framework that supports the modeling/programming of
behavior as loosely coupled scenarios, which is close to how
humans conceive and communicate behavioral requirements.
Combined with JUnit, we propose the Test-Driven Scenario
Specification (TDSS) process, which introduces agile practices
into the early phases of development, significantly reducing the
risk of requirement inconsistencies and ambiguities, and, thus,
reducing development costs. We overview TDSS with the help
of an example from the e-mobility domain, report on lessons
learned, and outline open challenges.

Index Terms—Automotive Software Engineering, Require-
ments Analysis, Software Development, Software Test, Test-
Driven Development

I. INTRODUCTION

Software is a key innovation factor in the automotive
domain. Due to the rising complexity of automotive software it
is increasingly challenging to develop the often safety-critical
software with high quality and in short time. New methods
and tools are needed to support collaborative, distributed, and
incremental development, while maintaining a strong focus on
validation and reducing uncertainty during development.

Our contribution to this goal is a new requirements speci-
fication and analysis technique based on executable scenarios
and automated testing, which enables us to introduce agile
practices, in particular test-driven development (TDD), already
into the initial development phases. We call this technique the
Test-Driven Scenario Specification (TDSS) process.

TDSS is based on the Scenario Modeling Language for
Kotlin (SMLK), a Kotlin-based framework for modeling /
programming the behavior of a reactive software component
using loosely coupled threads of behavior, called scenarios.
Scenarios can be executed as a scenario program. SMLK

This work was supported by Leopold Kostal GmbH & Co. KG.

inherits the concepts of behavioral programming (BP) [10],
Live Sequence Charts (LSC) [4] and the Scenario Modeling
Language (SML) [7]. Scenarios can extend as well as constrain
the behavior of other scenarios. This allows for a flexible
modeling of behavior requirements close to how humans
conceive and communicate them. SMLK also supports the
modeling of test scenarios, which can be executed as JUnit
tests, allowing us to model and execute specific scenario-
/requirement interplays.

In TDSS, we assume that we are developing a reactive
software component and have a source of requirements (e.g.,
a document or human stakeholder) that specifies what events
or data are the inputs and outputs of that components as well
as what the desired relationship of these inputs and outputs is
over time. Then, TDSS consists in a repeated process where
we take a requirement, and first create a test scenario for it,
which is expected to fail. We then add one or several scenarios
to the specification in order to formalize the requirement and
satisfy the test case. If the test fails, this might reveal a simple
modeling problem, or an inconsistency in the requirements
modeled thus far. If the test passes, the process is repeated,
first with further tests for the same requirement, e.g., covering
corner cases, and then the process is repeated for the next
requirement. Finally, we obtain an executable requirements-
and test specification of the component to be developed.

This process greatly reduces the risk of requirement am-
biguities or inconsistencies to survive into later development
stages. Moreover, the executable test and requirement specifi-
cations are useful in later development tasks, such as testing
and failure interpretation. TDSS also allows us to consider
fault tolerance concerns during the requirement specification
and analysis, by carrying out fault injection tests, e.g., testing
invalid input values. These tests are required by functional
safety standards like ISO 26262 [3], [13].

We assessed the TDSS approach within an ongoing de-
velopment project at an automotive tier-1 supplier. In this
project an onboard-charger (OBC)1 is developed. The OBC is

1https://www.kostal-automobil-elektrik.com/en-gb/produkte/elektronische-
steuergeraete/leistungssteuergeraete



an Electronic Control Unit (ECU) of electric vehicles, which
is used to convert AC-power from the main to DC-power
to charge the vehicle’s battery. We applied TDSS to analyze
requirements of the function Derating, which is responsible
for reducing the output power due to thermal reasons.

In our assessment, we went through the software de-
velopment process in accordance with ASPICE [23], from
requirements analysis to model-in-the-loop (MIL) test, and
we implemented the software of the derating functionality.
As a basis we took real world requirements as they were
implemented in the OBC product, and then we added new
requirements. It turned out that these requirements contain
contradicting statements, which we first discovered during
MIL test. In parallel, we ran the development process starting
with analyzing the requirements with TDSS, and, in fact,
detected the contradicting requirements already in that pro-
cess. This shows that TDSS has the potential to reduce the
development time by starting the implementation phase with
a thoroughly analyzed specification.

II. BACKGROUND

A. Automotive Software Development

Software development in the automotive domain is usu-
ally a requirements-driven, model-based approach, where the
overall product development is based on the V-model and
confirms to the ASPICE and functional safety standards [21].
ASPICE requires a software analysis phase, which usually
consists of manual reviews. The requirements that shall be
implemented by software are manually transformed into text-
based, but formal requirements, e.g., using the MTest Assess-
able Requirements Syntax (MARS) [20], which is used in
the OBC development project at KOSTAL. Based on these
formal requirements the software developer builds the software
model using Matlab/Simulink. After implementation, a MIL
test is used to check the model’s behavior. The MIL test
requires at least one test sequence and one assessment for each
requirement. The test sequence contains input signal vectors to
test the behavior regarding the requirement. The assessment is
used to verify the model output against the requirements [20].
Because the requirements are written formally, it is possible
to derive the assessments automatically from the requirements
with state-of-the-art MIL test tools. At KOSTAL, tools like
MES Test Manager [19] are used.

B. Derating Example

As an example, we use the function Derating, which shall
be realized by the OBC. In electric vehicles, the OBC is
connected to the car’s cooling and high voltage system.

The function Derating is responsible for reducing the output
power in order to prevent the overheating and destruction of
the ECU. The decision to power down is based on the coolant
inlet temperature and the power electronics PCB (printed
circuit board) temperature. Table I lists 5 basic requirements
on the ECU-system level for this function.

Fig. 1: OBC with high voltage connectors (left) and cooling
connectors (right)

TABLE I: Requirements for Derating

ID Requirement
Req1 No temperature related derating of the available output power

shall be commanded, if the coolant inlet temperature sensor
reads values between −40 ◦C and 65 ◦C.

Req2 If the coolant inlet temperature sensor reads values between
65 ◦C and 75 ◦C, linear derating with 1/10 of maximal
output power per 1 ◦C shall be commanded.

Req3 Power-down above 75 ◦C coolant inlet temperature.
Req4 Power-down if coolant inlet temperature increases more than

5 ◦C within 5 s.
Req5 Power-down if PCB temperature increases more than 20 ◦C

within 3 s.

C. Scenario Modeling Language for Kotlin (SMLK)

SMLK is a Kotlin-based framework for modeling the be-
havior of a software system via loosely coupled threads of
behavior, called scenarios. A set of scenarios forms a scenario
specification, which can be executed as a scenario program. A
scenario program receives a sequence of external events, and
can react to each event with one of several events.

SMLK leverages multiple concepts of the Kotlin language,
such as coroutines, channels, extensions functions, and higher-
order functions, so that scenarios can be modeled concisely.

Inspired by Behavioral Programming [10], each SMLK
scenario is a thread of behavior (a Kotlin coroutine) that, by
the help of the available programming idioms, can specify
a sequence of sync points where a special sync method is
called. At these points, a scenario can specify events that
it requests, waits-for, and/or forbids, with the constraint that
external events are never requested.

Let us assume a scenario program execution where initially
no scenario is active (there might be, for initialization pur-
poses), and where the program waits for an external event.
This event may trigger scenarios that progress to their first
sync point. If then there are requested events, a central
event selection algorithm chooses one of these events that is
not currently forbidden, executes this event, and notifies all
scenarios that requested or waited-for that event. The notified
scenarios then proceed to their next sync point, and the process
is repeated until no further events are requested. Then the next
external event is processed, and so on. If at some point during
execution, all requested events are also forbidden, the scenario
program terminates and reports the conflict.



In addition to calling sync directly, there are convenience
methods for requesting and waiting-for events (request and
waitFor), which in turn call sync. Events that are forbid-
den across several sync-points or events that shall interrupt
the scenario, can be added to and removed from the sets
forbiddenEvents and interruptingEvents, respectively.

Events can take different forms, but one specific concept
provided by SMLK, is that of an object event, which is an
event that models the method call or a signal received by
an object or component, and which can also have a side
effect on the receiving object’s properties. Listing 1 shows
how object events are declared and created: the function
setDeratingFactor of the DeratingComponent class calls
the event function, which creates an object event representing
that specific method call, with the parameter value passed to
the method. A lambda function (within curly braces) can be
passed to the event function2 to model the side-effect that the
event has upon its execution. Here, the side-effect is setting
the attribute deratingFactor to the value of the passed
parameter. The object events startCycle and endCycle are
declared similarly, but have no parameters nor side-effects.

1 class DeratingComponent {
2 var coolantTemp = 0 // in degrees celsius
3 var deratingFactor = 0.0 // values [0..1]
4 fun setDeratingFactor(factor : Double) = event(factor){

deratingFactor = factor}
5 fun startCycle() = event{}
6 fun endCycle() = event{}
7 ...
8 }

Listing 1: Declaring object events in SMLK

Listing 2 shows how to model a scenario that initializes
on each occurrence of the object event startCycle received
by the object deratingComponent. If now the coolantTemp
of deratingComponent is in the range of −40 to 65, the
scenario reaches a sync point where it requests the exe-
cution of deratingComponent.setDeratingFactor(1.0).
This means that no derating should occur in that temperature
range. This models the requirement Req1 (cf. Tabl. I).

1 scenario(deratingComponent.startCycle()){
2 if (deratingComponent.coolantTemp in -40..65)
3 request(deratingComponent.setDeratingFactor(1.0))
4 }

Listing 2: First attempt of formalzing Req1 with SMLK

The startCycle and endCycle events here are used to
specifically model the behavior of software components that
are executed in cycles, where they read inputs, execute, and
write outputs in regular intervals, as is the case for many
embedded and automotive software systems. We assume that
startCycle is called regularly by an external run-time, then
the software component executes and ends its computation
before the next cycle starts.

In order to formulate requirement scenarios in that setting,
we define the function cycleScenario as shown in Listing 3,
which allows us to concisely create scenarios that model

2In Kotlin, a lambda passed as the last function parameter can be written
outside of the parentheses, see https://kotlinlang.org/docs/reference/lambdas.
html#passing-a-lambda-to-the-last-parameter

execution cycle requirements. The function takes two argu-
ments: first, the deratingComponent, and, second, a scenario
lambda mainScenario. mainScenario is invoked between
startCycle and endCycle, and startCycle and end-Cycle
are forbidden to occur (by adding them to forbiddenEvents)
during the execution of mainScenario.

1 fun cycleScenario(deratingComponent : DeratingComponent,
mainScenario : suspend Scenario.() -> Unit) : suspend
Scenario.() -> Unit =

2 scenario(deratingComponent.startCycle()){
3 forbiddenEvents.add(deratingComponent.startCycle())
4 forbiddenEvents.add(deratingComponent.endCycle())
5 mainScenario.invoke(this@scenario)
6 request(runnable.endCycle())
7 }

Listing 3: A function for creating scenarios that express
requirements of an execution cycle

Now we can formalize the Req1 as show in Listing 4:
1 cycleScenario(deratingComponent){
2 if (deratingComponent.coolantTemp in -40..65)
3 request(deratingComponent.setDeratingFactor(1.0))
4 }

Listing 4: Modeling Req1 as a cycleScenario

The scenarios as shown above can be added to a scenario
program; we omit details for brevity. For testing scenario
programs, SMLK supports modeling test scenarios and exe-
cuting them as JUnit tests. In test scenarios, external events
are requested, and events from the scenario program to be
tested can be waited-for. The test passes when both the test and
the scenario-program under test terminate without violations.
Examples are shown in the next section.

III. TEST-DRIVEN SCENARIO SPECIFICATION

TDSS combines formal scenario-based specification and
analysis with TDD [6]. TDD was originally designed for
software unit testing, where tests are written and executed
before writing the program code. In small iterations tests and
code are extended and adapted following the red/green/refactor
approach [2]. The first step is writing a new test to validate
a new functionality, which is expected to fail initially (red).
In the second step the implementation must be extended or
adapted until the tests pass (green). The third step (refactor) is
cleaning up the code, without changing the functionality. We
propose the TDSS process as shown in Fig. 2.

(1) Write 
a new 

test case

(2) Execute 
this new 
test case

(3) Extend 
or adapt 

specification

(4) 
Execute all 
tests cases

test
passed

(5) 
Clean 

up
test
failed

tests failed

all tests
passed

all req. 
modeled

req. remain to 
be modeled

Fig. 2: Test-Driven Scenario Specification (TDSS) Process

1) Write a new test case: Take a stakeholder requirement
and write a test for that requirement.

2) Execute this new test case: We expect the test to fail
as the requirement is not yet specified as an executable
scenario. If the test passes, it is a special case where the
requirement is already covered by existing scenarios.

https://kotlinlang.org/docs/reference/lambdas.html#passing-a-lambda-to-the-last-parameter
https://kotlinlang.org/docs/reference/lambdas.html#passing-a-lambda-to-the-last-parameter


3) Extend or adapt specification: Formally model the
requirement. Possibly, this requires adapting existing
scenarios in order to resolve inconsistencies.

4) Execute all test cases: Run all tests in order to validate
the interplay of all scenarios and, hence, the interplay
of all the requirements, specified thus far.

5) Clean up scenarios and document requirements:
Clean the specification code and update, if it exists, the
corresponding text-based requirement description. The
result is a formal requirement and test specification as
the basis for subsequent development activities.

As an example of the TDSS process, let us consider the
test-first specification of Req2. As a test case, we can choose
one particular and simple run that covers this requirement,
for example where the coolant inlet temperature is 70. This
should result in a derating factor of 0.5 to be set within the
next execution cycle. Listing 5 shows how the test looks like.

1 @Test
2 fun ‘At 70 degree the DeratingFactor is 0-5‘()
3 = runTest(deratingScenarioProgram){
4 forbiddenEvents.add(deratingComponent receives DeratingComponent::

setDeratingFactor)
5 request(deratingComponent.setCoolantTemperature(70))
6 request(deratingComponent.startCycle())
7 waitFor(deratingComponent.setDeratingFactor(0.5))
8 waitFor(deratingComponent.endCycle())
9 }

Listing 5: JUnit test implementation

In line 4, we forbid any setDeratingFactor event from
occurring, except where and with what parameter value it is
explicitly waited for later on. In line 5, we set the coolant
temperature value. In line 6 we start the cycle and then (line 7)
we expect the derating factor to be set to 0.5. Finally, we wait-
for the derating component to end its current execution cycle.

Because it is tedious to always model each step in the
process of (1) setting input values, (2) starting the cycle,
(3) expecting output values to be set, and (4) waiting for
the end of the cycle, we extract this code in a function
deratingIOSequence, which does this for us and just re-
ceives two input values (coolant inlet temperature and pcb
temperature) and one output value (derating factor). Listing 6
shows how the test can be written now in a shorter form:

1 @Test
2 fun ‘At 70 degree the DeratingFactor is 0-5‘() = runTest(

deratingScenarioProgram){
3 deratingIOSequence(Triple(70, 70, 0.5))
4 }

Listing 6: Simplified JUnit test implementation

After running this test (Step 2) we see that the test failed,
of course, because the requirement is not modeled yet. After
adding the cycle scenario shown in Listing 7 (Step 3) all tests
written so far are executed (Step 4) and pass.

1 // Derating factor derates linearly from 1.0 to 0.0 when coolant
temperature is between 65 and 75

2 cycleScenario(deratingComponent){
3 if (deratingComponent.coolantTemp in 65..75)
4 request(deratingComponent.setDeratingFactor((75.0-deratingComponent

.coolantTemp)/10))
5 }

Listing 7: Scenario for derating within a specific temperature
range

These steps can be repeated with further tests for the same
requirement, for example testing corner cases at 65 and 66
degrees coolant inlet temperature.

Let us assume that we repeated the process also for Req1
and Req3, and we now consider Req4. In contrast to the
requirements modeled before, this requirement specifies how
to deal with temperature changes over a period of time.

We write and execute tests as before (Steps 1 and 2), and see
them fail. Then (Step 3) we model Req4 as shown in Listing 8,
as a scenario that starts when the coolant temperature is set.
We then read temperature parameter value from this initial
event (line 5) and initialize a variable currentTemp that we
update with the coolant temperature values (line 21) for the
next 50 cycles, which corresponds to a duration of 5 seconds.
If currentTemp deviates from the initial temperature more
than 5 degrees, then we request to execute an exceptional tem-
perature increase event (line 16), as well as to set the derating
factor to 0.0 (line 17). Events are added to forbiddenEvents
(lines 9, 10, 15) to indicate that they must only occur unless
specifically requested or waited-for, i.e., the scenario is strict
about where execution cycles start and end, and in the case
of an exceptional temperature increase, does not allow setting
the derating factor to values other than 0.0.

1 // Shutdown if coolant temp increases more than 5 degrees within a
period of 5 seconds

2 scenario(deratingComponent receives DeratingComponent::
setCoolantTemperature){

3
4 // read new coolant temperature value
5 val initialTemp = it.parameters[0] as Int
6 var currentTemp = initialTemp
7
8 // allow cycles’ start/end only where waited for below.
9 forbiddenEvents.add(deratingComponent.startCycle())

10 forbiddenEvents.add(deratingComponent.endCycle())
11
12 for(i in 1..50){ // for 50 cycles = 5 seconds...
13 waitFor(deratingComponent.startCycle())
14 if (currentTemp - initialTemp > 5){
15 forbiddenEvents.add(deratingComponent receives DeratingComponent

::setDeratingFactor)
16 request(deratingComponent.exceptionalTemperatureIncrease())
17 request(deratingComponent.setDeratingFactor(0.0))
18 break // end the for loop and, hence, the scenario
19 }
20 waitFor(deratingComponent.endCycle())
21 currentTemp = waitFor(deratingComponent receives DeratingComponent

::setCoolantTemperature).parameters[0] as Int
22 }
23 }

Listing 8: Scenario to shutdown on sudden temperature
increases

Note that new activations of this scenario are created with
every cycle, when the coolant temperature is set. So, up to
50 active instances of this scenario may execute at a time.
This is not how we would implement this behavior in the final
software, but it is an intuitive formalization of the requirement.

With this scenario included, we run all tests again (Step 4)
and see failed tests (see. Fig. 3). The reason for this failure is
a contradiction in requirements Req1 and Req4: In Req1, we
do not expect the output power to derate when we measure a
temperature in the -40 to 65 degree range, but in Req4, we
expect the output power to be disabled when we measure a 5
degree increase in coolant inlet temperature within 5 seconds.
Hence disabling of the output power could also happen in the



temperature range given in Req1. This leads to a violation
while running the scenarios, since different values for the
derating factor are expected in the tests.

Fig. 3: Test results with inconsistent requirements

The stakeholders must now resolve this inconsistency. Let
us assume that Req4 is meant to be a special case of, and
shall have priority over, Req1. That is, the output power
shall be reduced if an exceptional temperature increase oc-
curs. To resolve this inconsistency in the scenarios, we add
exceptionalTemperatureIncrease as interrupting event in
the scenarios of requirements Req1 and Req2, see Listing 9.

1 // Derating factor derages linearly from 1.0 to 0.0 between
[65..75]

2 cycleScenario(deratingComponent){
3 interruptingEvents.add(deratingComponent.

exceptionalTemperatureIncrease())
4 if (deratingComponent.coolantTemp in 65..75)
5 request(deratingComponent.setDeratingFactor((75.0-deratingComponent

.coolantTemp)/10))
6 }

Listing 9: Scenario from Listing 7 with added interrupt on
exeptional temperature increase

After executing all tests again (Step 4), we see that all tests
pass. After treating also Req5, we clean up and update the
textual requirements. We also translate the requirements in the
MARS syntax, so they can be used as test assessments later
on (cf. Sect. II-A). Listing 10 shows this exemplary for Req2.
1 WHILE signal CoolantTemperature is greater than 65 and signal

CoolantTemperature is less than 75 and from when the system
starts until when diff(signal CoolantTemperature,parameter
CoolantInitTemperature) becomes a value greater than 0.01 or
when diff(signal PcbTemperature,parameter PcbInitTemperature)
becomes a value greater than 0.0667 or when signal
CoolantTemperature becomes greater than 75 THE signal
DeratingFactor SHALL be equal to parameter DeratingOffset +
parameter DeratingSlope * signal CoolantTemperature

2 }

Listing 10: Extended requirement Req2 for MIL test

IV. EVALUATION

In parallel to the TDSS process, one member of out team
went through the classical automotive software development
process outlined in Sect. II-A with the task to incorporate
the new requirements Req4 and Req5. He was not made
aware of the requirement inconsistency. After analyzing the
requirements, he implemented and tested the new functionality.

This team member formalized Req2 in MARS as docu-
mented in Listing 11 and specified and executed the following
four MIL tests of the implemented (Simulink) model:

• Tseq001: Tests the requirements Req1 to Req3 by slowly
increasing the coolant temperature from 50 ◦C to 100 ◦C.

• Tseq002: Tests the requirements Req5 by fast increasing
the pcb temperature at a coolant temperature of 50 ◦C.

• Tseq003: Tests the requirements Req4 by fast increasing
the coolant temperature at a pcb temperature of 50 ◦C.

• Tseq004: Tests the requirements Req5 by fast increasing
the pcb temperature at a coolant temperature of 70 ◦C.

1 WHILE signal CoolantTemperature is greater than 65 and signal
CoolantTemperature is less than 75 THE signal DeratingFactor
SHALL be equal to parameter DeratingOffset + parameter

DeratingSlope * signal CoolantTemperature
2 }

Listing 11: Unextended requirement Req2 for MIL test

The MIL test results are shown on the left of Fig. 4. The
requirements Req1 and Req2 are failing in the test sequences
2 to 4, which are testing the power down ability of the
component. This happens because of the contradictory require-
ments, as described above. Only after resolving this conflict
and repeating the requirement analysis, implementation, and
testing steps, was the conflict resolved (see Fig. 4, right side).

Fig. 4: MIL test results with contradictory requirements on the
left and fixed requirements on the right.

The result of this small experiment is that, by using TDSS,
we were successfully able to detect contradicting requirements
already before the software model is implemented and tested.
In this experiment, the time and effort of applying TDSS
vs. fixing the inconsistency later in the standard development
process was similar. We plan further case studies to investigate
whether TDSS can reduce the development time and effort.

V. RELATED WORK

Attempts to combine TDD with requirements specification
are not new. Most approaches, however, propose using tests
as means to specify natural language requirements more pre-
cisely [11]. Behavior-Driven Development (BDD) is a similar
agile practice that proposes to use concrete behavior examples
in order to focus the development. Lettrari and Klose [16]
describe an approach for using UML sequence diagrams to
model monitors and tests of real-time requirements.

Jones [14] describes a test-first approach for a specification
in the form of a decision table. In decision tables, however, it
is difficult to formalize requirements over multiple steps.



In the context of scenario-based specifications akin LSC,
there exists the idea to use existential scenarios as test de-
scriptions [9], [17], [22]. Our work follows this idea and
presents a particular technology that supports and showcases
its application in the automotive domain.

This work extends previous work of evaluating scenario
modeling and automated consistency checks in the automotive
domain [8]. In contrast to that work, this paper focuses on test-
driven requirements validation, which we see as an often more
practical and pragmatic approach than doing computationally
expensive consistency proofs and interpreting their results.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented TDSS, a new approach for
the test-driven, scenario-based requirement specification and
analysis, combining agile practices with formal specification
and analysis. This paper is also the first to showcase SMLK,
which we used to implement and evaluate TDSS.

We performed a small experiment that shows the applica-
bility and benefits of TDSS, as we could successfully detect
a requirement inconsistency using TDSS, which was initially
overlooked when following a classical development process.

Further results of our assessment are that scenario-based
specification, in the form of SMLK, is indeed suited to
formalize functional requirements in an intuitive way. Simple
requirements can be modeled concisely. More complicated
requirements require more detailed thinking and modeling,
but can still be modeled close to how the requirements are
formulated. This brings two psychological and factual benefits:
The ability to immediately test the modeled requirements
brings high confidence and a feeling of control to the re-
quirements specification and analysis phase. When the final
implementation is tested, it brings a high confidence of its
correctness as there is an automated three-way validation of the
developed behavior: tests vs. requirements vs. implementation.

We could also show that the modeled requirements can
easily be reused as assessments inside component tests. This
highly reduces the effort in later component tests.

In future work we plan to address further test case specifica-
tion challenges [15], e.g., reducing the test specification effort
by synthesizing tests automatically based on combinatorial test
design [18]. We also plan to conduct further case studies,
in order to more systematically assess the time and effort
reduction that TDSS might bring. We will also investigate how
TDSS can be combined with integrated and iterative systems
engineering methodologies [12] and agile system engineering
methods and practices [1], [5].

REFERENCES

[1] A. Albers, J. Heimicke, M. Spadinger, N. Reiß, J. Breitschuh, T. Richter,
N. Bursac, and F. Marthaler. Eine systematik zur situationsadäquaten
mechatroniksystementwicklung durch asd - agile systems design. Tech-
nical report, Karlsruher Institut für Technologie (KIT), 2019.

[2] K. Beck. Test-driven development: by example. Addison-Wesley, 2003.
[3] D. Cotroneo and R. Natella. Fault injection for software certification.

IEEE Security Privacy, 11(4):38–45, July 2013.
[4] W. Damm and D. Harel. LSCs: Breathing life into message sequence

charts. In Formal Methods in System Design, volume 19, pages 45–80,
2001.

[5] D. Feldmüller. Usage of agile practices in mechatronics system desing
- potentials, challenges and actual surveys. In 2018 19th International
Conference on Research and Education in Mechatronics (REM), pages
30–35. IEEE, 2018.

[6] S. Fraser, K. Beck, B. Caputo, T. Mackinnon, J. Newkirk, and C. Poole.
Test driven development (tdd). In Marchesi M., Succi G. (eds) Extreme
Programming and Agile Processes in Software Engineering. XP 2003.
Lecture Notes in Computer Science, vol 2675. Springer, Berlin, Heidel-
berg. Springer, 2003.

[7] J. Greenyer, D. Gritzner, T. Gutjahr, F. König, N. Glade, A. Marron, and
G. Katz. Scenariotools – a tool suite for the scenario-based modeling
and analysis of reactive systems. Science of Computer Programming,
149(Supplement C):15 – 27, 2017. Special Issue on MODELS’16.

[8] J. Greenyer, M. Haase, J. Marhenke, and R. Bellmer. Evaluating a formal
scenario-based method for the requirements analysis in automotive
software engineering. In Proc. 10th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE 2013, 2015.

[9] D. Harel, H. Kugler, and G. Weiss. Some methodological observations
resulting from experience using LSCs and the play-in/play-out approach.
In S. Leue and T. J. Systä, editors, Scenarios: Models, Transformations
and Tools, pages 26–42, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[10] D. Harel, A. Marron, and G. Weiss. Behavioral programming. Comm.
ACM, 55(7):90–100, 2012.

[11] D. Hoffman and P. Strooper. Prose + test cases = specifications.
In Proceedings of the Technology of Object-Oriented Languages and
Systems (TOOLS 34’00), TOOLS ’00, pages 239–, Washington, DC,
USA, 2000. IEEE Computer Society.

[12] J. Holtmann, R. Bernijazov, M. Meyer, D. Schmelter, and C. Tschirner.
Integrated and iterative systems engineering and software requirements
engineering for technical systems. In Journal of Software Evolution and
Process, Special Issue on International Conference on Software and
Systems Process 2015, 2015.

[13] International Organization for Standardization (ISO). Road vehicles –
Functional safety – Part 6: Product development at the software level,
ISO 26262-6:2018.

[14] E. L. Jones. Test-driven specification: Paradigm and automation. In
Proceedings of the 44th Annual Southeast Regional Conference, ACM-
SE 44, pages 796–797, New York, NY, USA, 2006. ACM.

[15] K. Juhnke, M. Tichy, and F. Houdek. Poster: Challenges with auto-
motive test case specifications. In 2018 ACM/IEEE 40th International
Conference on Software Engineering: Companion Proceedings, pages
131–132. IEEE, 2018.

[16] M. Lettrari and J. Klose. Scenario-based monitoring and testing of real-
time uml models. In M. Gogolla and C. Kobryn, editors, UML 2001
— The Unified Modeling Language. Modeling Languages, Concepts,
and Tools, pages 317–328, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[17] L. Li, H. Gao, and T. Shan. An executable model and testing for
web software based on live sequence charts. In 2016 IEEE/ACIS 15th
International Conference on Computer and Information Science (ICIS),
pages 1–6, June 2016.

[18] V. P. L. Manna, I. Segall, and J. Greenyer. Synthesizing tests for com-
binatorial coverage of modal scenario specifications. In Model Driven
Engineering Languages and Systems (MODELS), 2015 ACM/IEEE 18th
International Conference on, pages 126–135, Sept 2015.

[19] Model Engineering Solutions. MES Test Manager (MTest). https://
model-engineers.com/de/quality-tools/mtest/, 2019. last
access: 6.2019.

[20] Model Engineering Solutions. MES Test Manager (MTest) -
overview assessment framework. https://model-engineers.
com/de/quality-tools/mtest/?file=files/upload/
quality-tools/mtest/mes_test_manager_flyer.pdf, 2019.
last access: 6.2019.

[21] H.-L. Ross. Functional Safety for Road Vehicles. Springer International
Publishing, 2016.

[22] G. Sibay, S. Uchitel, and V. Braberman. Existential Live Sequence
Charts Revisited. In Proceedings of the ACM/IEEE 30th Int. Conference
on Software Engineering ICSE ’08, pages 41–50, 2008.

[23] VDA QMC Working Group 13 / Automotive SIG. Automotive
spice - process reference model - process assessment model version
3.1. http://www.automotivespice.com/fileadmin/software-download/
AutomotiveSPICE_PAM_31.pdf, 2017.

https://model-engineers.com/de/quality-tools/mtest/
https://model-engineers.com/de/quality-tools/mtest/
https://model-engineers.com/de/quality-tools/mtest/?file=files/upload/quality-tools/mtest/mes_test_manager_flyer.pdf
https://model-engineers.com/de/quality-tools/mtest/?file=files/upload/quality-tools/mtest/mes_test_manager_flyer.pdf
https://model-engineers.com/de/quality-tools/mtest/?file=files/upload/quality-tools/mtest/mes_test_manager_flyer.pdf
http://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf
http://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf

	Introduction
	Background
	Automotive Software Development
	Derating Example
	Scenario Modeling Language for Kotlin (SMLK)

	Test-Driven Scenario Specification
	Evaluation
	Related Work
	Conclusion and Outlook
	References

