
Scenarios in the Loop: Integrated Requirements Analysis and
Automotive System Validation

Carsten Wiecher
carsten.wiecher@fh-dortmund.de
Dortmund University of Applied

Sciences and Arts
Dortmund, Germany

Sergej Japs
sergej.japs@iem.fraunhofer.de

Fraunhofer IEM
Paderborn, Germany

Lydia Kaiser
lydia.kaiser@iem.fraunhofer.de

Fraunhofer IEM
Paderborn, Germany

Joel Greenyer
joel@jgreen.de

Leibniz Universität Hannover
Hannover, Germany

Roman Dumitrescu
roman.dumitrescu@iem.fraunhofer.de

Fraunhofer IEM
Paderborn, Germany

Carsten Wolff
carsten.wolff@fh-dortmund.de
Dortmund University of Applied

Sciences and Arts
Dortmund, Germany

ABSTRACT
The development of safety-relevant systems in the automotive in-
dustry requires the definition of high-quality requirements and
tests for the coordination and monitoring of development activities
in an agile development environment. In this paper we describe
a Scenarios in the Loop (SCIL) approach. SCIL combines (1) natu-
ral language requirements specification based on Behavior-Driven
Development (BDD) with (2) formal and test-driven requirements
modeling and analysis, and (3) integrates discipline-specific tools
for software and system validation during development. A cen-
tral element of SCIL is a flexible and executable scenario-based
modeling language, the Scenario Modeling Language for Kotlin
(SMLK). SMLK allows for an intuitive requirements formalization,
and supports engineers to move iteratively, and continuously aided
by automated checks, from stakeholder requirements to the valida-
tion of the implemented system. We evaluated the approach using
a real example from the field of e-mobility.

CCS CONCEPTS
• Software and its engineering→ Systemmodeling languages;
Agile software development.

KEYWORDS
Automotive Systems Engineering, Requirements Analysis, System
Validation, BizDevOps
ACM Reference Format:
Carsten Wiecher, Sergej Japs, Lydia Kaiser, Joel Greenyer, Roman Du-
mitrescu, and Carsten Wolff. 2020. Scenarios in the Loop: Integrated Re-
quirements Analysis and Automotive System Validation. In ACM/IEEE 23rd
International Conference on Model Driven Engineering Languages and Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8135-2/20/10. . . $15.00
https://doi.org/10.1145/3417990.3421264

(MODELS ’20 Companion), October 18–23, 2020, Virtual Event, Canada. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3417990.3421264

1 INTRODUCTION
In the automotive industry, innovative functions are increasingly
defined by software. These functions are today rarely realized by
single components. Instead, functions like smart charging may span
multiple subsystems [1]. This poses challenges on electronic control
unit (ECU) development [40].

New tools and methods are needed that make complexity con-
trollable through appropriate abstraction and which support agile
development in order to react quickly to changes by the customer or
other stakeholders [11]. Moreover, the special emphasis within the
automotive industry regarding functional safety [20] and security
[32] have to be considered. This makes it necessary to coordinate
and document requirements for system behavior in a form that is
understandable to all stakeholders [27]. Likewise, it must be en-
sured, through validation, that all development artifacts meet the
requirements and expectations of the stakeholders.

To meet these challenges, we propose a Scenarios in the Loop
(SCIL) approach, which takes a holistic view of the process from
textual behavior requirements to the comprehensive testing of de-
velopment artifacts. SCIL takes up the XIL approach established
in the automotive industry [15] [9] [28] and extends it by a tool-
supported, scenario-based and intuitive modeling of functional
system requirements and tests. By formally describing the require-
ments, they can be executed and automatically analyzed, and are
thus part of the test loop (Requirements in the Loop).

SCIL was developed following the design science research (DSR)
approach [8]. A central component of SCIL is the Scenario Model-
ing Language for Kotlin (SMLK), which allows for an intuitive yet
executable modeling of system behavior [41]. SMLK is based on the
concepts of Live Sequence Charts (LSC) [5], Behavioral Program-
ming (BP) [14] and the Scenario Modeling Language (SML) [12].
Within the SCIL framework, SMLK is integrated with the Behavior-
Driven Development (BDD) tool Cucumber [34], which allows the
user to create and edit scenario-based natural language require-
ments using the gherkin syntax1 and generate test sequences based

1https://cucumber.io/docs/gherkin/

https://doi.org/10.1145/3417990.3421264
https://doi.org/10.1145/3417990.3421264

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Wiecher et al.

on these scenarios. In addition, the SCIL framework integrates other
commercial validation tools widely used in the automotive industry
[39] [21] [22], which allow automated execution of tests.

The transition from textual descriptions of system behavior to
automated tests of the implemented system is realized via three
closely coupled process layers, the Communication and Documenta-
tion Layer, theModeling Layer, and the Validation Layer ; these layers
realize the BizDevOps paradigm [30] in the automotive context, en-
hancing the collaboration of all stakeholders so that software can
be released rapidly, frequently, and more reliably.

We evaluated SCIL using an example from the field of e-mobility.
Based on a real requirements specification, we performed the indi-
vidual SCIL steps from scenario-based documentation and intuitive
modeling of the system behavior to automated testing of the imple-
mented function.

The lessons learned are the following. (1) The short iterations
in the individual process layers can enable agile cross-disciplinary
development. (2) The BDD approach integrates the customer more
closely into the development process, since the aligned, scenario-
based documentation of expected system behavior provides a clear
definition of development goals. (3) The close coupling of the indi-
vidual process layers increases in efficiency for software and system
validation, by re-using a test model for the automated validation
of development artifacts. (4) The closed and short feedback loops
across the individual process layers enable a well-founded analysis
of requirements and development artifacts. This analysis is useful
for agile project management. The test model mirrors the devel-
opment goals and is used in the requirements analysis phase to
detect contradictions in the requirements. For software and sys-
tem validation, the test model monitors the implementation status.
The closed feedback loops allow for a continuous comparison and
concretization of requirements and implementation.

This paper is structured as follows. We describe background
in Sect. 2, the SCIL approach in Sect. 3, and a proof-of-concept
application in Sect. 4. We evaluate results in Sect. 5, report related
work in Sect. 6, and conclude in Sect. 7.

2 BACKGROUND
2.1 Automotive Systems Engineering
The development of software-intensive electronic control units in
the automotive industry is highly distributed, cross-disciplinary and
increasingly collaborative in new development networks. The basis
for the development of often safety-critical systems are different
standards (e.g. ISO26262 [20], ISO/SAE 21434 [32]). These must be
taken into account by the stakeholders involved in the development,
which leads to extensive process implementations in the companies
participating. The maturity level of the process implementations
is checked by means of assessments [38]. The development pro-
cesses include dedicated process steps for requirements analysis
and validation of development artifacts on the software and sys-
tem level. Different role definitions exist for the execution of the
individual process steps. To illustrate the SCIL approach, the roles
Customer Interface, Requirements Owner, System Analyst and Valida-
tion Engineer are used here, based on the definitions of Sheard [33]
and motivated by Holtmann et al. [16]. These roles are used here
to describe the SCIL process and can be used as orientation for

the integration of the SCIL approach into existing development
processes.

Customer Interface (CI): The CI determines the scheduling,
technical and financial framework for product development with
the customer and other stakeholders. The coordination and con-
cretization of requirements is an important part of this.

RequirementsOwner (RO): The RO translates customer needs
into clearly formulated requirements and creates an understanding
of system boundaries and interfaces. Based on this, the RO evaluates
the impact of requirements changes on the system to be developed.

System Analyst (SA): The SA models and simulates the system
to evaluate technical decisions and to understand how the system
to be developed will behave in its environment.

Validation Engineer (VE): The Validation Engineer checks
whether the developed system meets the requirements and ex-
pectations of the stakeholders.

2.2 BizDevOps
In agile software development, the DevOps approach [10] is used
to foster cross-functional cooperation amongst the developer teams
and the deployment teams. The approach defines an iterative pro-
cess interlinking the development and refinement of software with
the deployment and test in an operative environment in a continu-
ous flow. The Plan – Code – Build – Test flow of the development
phase (Dev) leads into the Release – Deploy – Operate – Monitor
flow of the operation phase (Ops). The results of the Monitor stage
in the Ops flow lead to improvement plans for the Dev phase (new
Plan stage). DevOps is used for the cooperation of development
and test teams, too. To allow the close involvement of the customer
and the consideration of the business objectives (Biz), the approach
is extended towards the BizDevOps paradigm [30]. In this case,
the Monitor stage of the Ops phase leads into a communication
and alignment with the customer and/or the business objectives
and forms the Adapt – Align – Define – Approve flow (Biz phase).
Feedback from the Monitor stage (of the Ops phase) is combined
with the latest customer and market feedback in order to adapt
the requirements. Stakeholders align based on a joint view on the
intended product. This alignment and the definition of the shared
vision of the product can be supported with model-based methods,
including the scenarios as a common language for technical and
business experts. A review and a joint approval of the updated
vision (and model) of the product leads into the planning stage of
the next Dev phase. The inclusion of the customers and all relevant
stakeholders and the alignment of technical result and business
view in each iteration are expected to lead to a much deeper in-
volvement of the customer into the development of new software
and a much better alignment with the customer requirements. Re-
quirements refinement and prioritization as much as alignment
with business objectives are embedded into the design flow. The
usage of scenarios and natural language behavioral descriptions
supports the involvement and joint understanding of stakeholders
from different domains. The definition of acceptance tests based
on such scenarios increase the transparency throughout the whole
process. A special emphasis is put on the development of joint met-
rics in BizDevOps which enable a superior delivery transparency

Scenarios in the Loop (SCIL) MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

for all stakeholders. SCIL is designed to support BizDevOps in the
automotive context.

2.3 Model-based Requirements Engineering
The analysis of requirements in the automotive industry is usually
done manually and based on informal requirements in natural lan-
guage [27] [26]. Although model-based development has a positive
impact on development quality and efficiency [17, 29], there is no
broad acceptance of model-based methods for early and automated
requirements analysis in the automotive industry [26]. Thus, poten-
tial benefits such as an early simulation and validation of the system
behavior [3, 13] or an automated check of the feasibility of require-
ments, and a synthesis of test cases based on them [31], is not used.
Furthermore, manual work for the transition from one phase to
the next is required, which is error prone and slow, compared to
model-driven automatic generation of artifacts.

Following the argumentation of Liebel [25] there are two ways
to increase acceptance of model-based methods for requirements
analysis within the automotive industry. On the one hand, the
necessary effort for modeling can be reduced, which increases the
subjective acceptance of the methods by the users and thus leads
to a sustainable application. On the other hand, the benefits that
arise from model-based requirements analysis can be increased,
for example by deriving information for downstream process steps
such as integration and validation. The SCIL approach adresses
both.

2.4 Example of Application
For the evaluation of the SCIL framework a function from the field
of e-mobility is used. This function shall realize the locking of the
charging plug. If a charging plug is connected to the charging socket
of the battery electric vehicle (BEV) and a charging process is to
be started, the plug must be locked to prevent the plug from being
disconnected while the charging process is active. This function is
safety relevant according to ISO 26262.

The structure at ECU level is shown in Figure 1. This function is

OBC Application
ECU

Charging
Socket

Charging
Station Battery

connector readback

motor control CAN messageBEV

Figure 1: Example of application

implemented by two ECUs; firstly, an Application ECU, which cen-
trally implements high-level functions and provides the interface
to other vehicle functions and services, and secondly, an on-board
charger (OBC), which is responsible for charging the BEV’s battery.
Here, the OBC is considered, which directly controls the locking of
the charging plug via hardware interfaces (motor control, connec-
tor readback). The OBC therefor implements the state based and
event driven logic for controlling the locking motor of the charging

socket. An extract of the requirements for the function Plug Lock
to be realized by the OBC is shown in Table 1.

Table 1: Requirements for Plug Lock

ID Requirement
Req1 If the signal LockingRequest reads "no lock request" the

interlock motor shall not be actuated
Req2 If the signal LockingRequest reads "lock request" the

interlock motor shall be actuated to close the interlock
of the plug

Req3 If the signal LockingRequest reads "unlock request" the
interlock motor shall be actuated to open the interlock
of the plug

Req4 If the signal LockingRequest reads "no request" and an
actuation is active, this shall be fully finished and not
aborted due to value "no request"

Req5 When the locking motor reaches an end position, this
must be confirmed in order to stop the motor actuation.

Req6 If an actuation of the interlock motor is started and
the end position is not confirmed within 2 seconds, the
actuation shall be stopped and the interlock motor shall
be actuated to open the interlock of the plug

The information that the charging plug should be locked is pro-
vided by the Application ECU and is transmitted via the CAN bus
to the OBC. In addition to the information whether the charging
plug is to be locked or unlocked (Req2 and Req3), there are fur-
ther requirements in this example which determine that the motor
should be stopped when an end position is reached (Req5), which
is indicated by the connector readback signal. An error case is
also considered if the end position is not reached within a speci-
fied timespan (Req6). Moreover, an active process for locking the
charging plug should not be interrupted (Req4).

2.5 Scenario Modeling Language for Kotlin
(SMLK)

SMLK is used for the formalization and execution of tests and
requirements. SMLK is a Kotlin-based framework for scenario-
based modeling of behavioral requirements. Kotlin concepts such
as higher-order functions, extension functions, channels and corou-
tines are used to create an internal DSL that enables a concise
specification of scenarios. A first application of SMLK is described
in [41] and the underlying concepts are described in [14].

In SMLK, several scenarios are combined within a scenario speci-
fication and can be executed as a scenario program. As an example,
the requirement Req2 specified as scenario has the form shown in
Listing 1.
1 scenario(OBC.LockingRequest("lock request")){ // trigger event
2 request(OBC.actuateLockingMotor ()) // requested event
3 }

Listing 1: SMLK scenario specification

A scenario can have a trigger event. Here it is OBC.LockingRequest
("lock request"). When this event occurs, the scenario is activated,
and the body of the scenario, enclosed in curly braces {...}, is

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Wiecher et al.

executed. The body can contain any (Kotlin) code as well as the
special statements waitFor and request, which are also called sync-
points. The above scenario, after activation, immediately requests
the event OBC.actuateLockingMotor().

The events shown above have the form <object>.<method(<pa-
rameters>)> and are called object events. Object events are used
for modeling a method call or a signal received by an object (or
component instance) of an underlying object model. Object events
can have side-effects on the object model. Scenarios can read the
object model anywhere in the scenario body, but can only make
changes through object events.

When a scenario program executes a set of active scenarios, each
scenario progresses its execution until all active scenarios reach a
sync-point, where each scenario requests an event or waits for an
event. The scenario program then chooses a requested event, and
notifies all active scenarios that request or wait for that event to
resume their execution. Also, new scenarios may be activated when
the selected event matches a scenario’s trigger event. Scenarios
are terminated when they terminate their execution body. This
event-selection and -execution cycle is repeated until no event is
requested or a special termination event occurs; then the scenario
program terminates.

At sync-points, scenarios can also block events. Blocked events
will not be chosen until the blocking scenarios progress and the
event is no longer blocked.

This style of programming and the principle of execution is
called Behavioral Programming (BP) [14]. With BP, complex system
behavior can be described intuitively, and often the behavior of a
set of scenarios can be extended or constrained iteratively just by
adding scenarios, only sometimes requiring changes in the prior
set of scenarios.

SMLK also allows scenario programs to be open, which means
that they can receive events from external programs, possibly again
scenario programs. This way, we can use the same language to also
model/program tests and environment models for a given scenario
program, even allowing for a test-first scenario-basedmodeling/pro-
gramming approach, which we described previously [41].

3 SCENARIOS IN THE LOOP (SCIL)
Based on the context and principles outlined above, this section
describes the SCIL approach. The SCIL approach is built on three
process layers (Communication and Documentation Layer, Modeling
Layer, Validation Layer), which, via suitable tool support, enable
an iterative and scenario-based requirements analysis [41] and au-
tomated system validation. The individual process steps on the
different layers, their relationships and the required or arising arti-
facts are outlined in Fig. 2. The roles introduced in chapter 2.1 are
used to describe the process execution.

3.1 Communication and Documentation (C&D)
Layer

The starting point are stakeholder requirements, which can exist in
any form. A requirement in this context is a solution-neutral prob-
lem description. The requirement describes what is to be developed
and is a documented condition or capability that a system must
provide or possess (according to [23] and [19]). Requirements are

not only influenced by the client (e.g. OEM), but also by persons
and organizations not directly involved in the development (e.g. leg-
islators, end customers, training personnel), which are summarized
here by the term stakeholder [23].

In the automotive context, customer requirements are usually
documented in text form in IBM Doors [18]. These requirements
are referenced with relevant standards and technical specifications
of other stakeholders, which can be in other formats. Based on these
requirements, the RO analyzes the available information regarding
system boundaries and derives the necessary interfaces of the sys-
tem to be realized (1). Based on the system interfaces, features to
be implemented are defined (2). For each feature a feature file is
created, which is used to document the usage scenarios (3). A usage
scenario describes the expected behavior of the system to realize
the feature from the perspective of a user or client of the system by
describing conditions and events of a particular execution of the
system.

The steps (1-3) are repeated as soon as new information is avail-
able, existing requirements are changed, or new requirements are
added. Following these steps, features and usage scenarios are added
iteratively.

The result of the C&D layer has the form shown in Listing 2.
This example shows Req2 formulated as scenario in the gherkin
syntax. For structuring, gherkin provides prepositions and adverbs
that precede the textual description (Given, When, Then, And, But).

1 Feature: plug lock
2
3 @charging
4 Scenario: lock request (Req2)
5 When the signal "LockingRequest" reads "lock request"
6 Then the interlock motor shall be actuated to close

the interlock of the plug

Listing 2: Documenting requirements with gherkin -
example based on Req2

In addition, there are further keywords that allow for a grouping
of different functionalities (Feature, Rule) using tags. For example,
as shown in line 3, the scenario lock request can be assigned to
the functionality charging, because the parent function battery
charging is only executed correctly if the charging plug is locked,
i.e. the scenario lock request has been executed.

This first part of the SCIL process describes the transition of in-
formal requirements to a structured documentation in feature files
including usage scenarios. This is driven by the RO and supported
by the SA; the SA carries out the modeling, simulation and analysis
of the system behavior on the basis of the resulting usage scenarios.
Especially the specification of the individual usage scenarios in (3)
is done jointly by RO and SA. This RO/SA collaboration, on the one
hand, corrects inaccuracies in the stakeholder requirements and,
on the other hand, ensures that the behavioral requirements are
correctly described as scenarios, thus providing a common under-
standing of the system to be developed as a starting point for further
modeling and analysis. Inaccuracies and questions that arise when
defining the features and concrete usage scenarios are discussed in
an early development phase between RO and stakeholders via the
CI (10).

Scenarios in the Loop (SCIL) MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

Legend

Process
Start

Iteration
Data
Object

Automated
Process

Manual
Process

Control
Flow

Data
Flow

1. Analyze
system interfaces 2. Identify features

3. Define
each feature by

one or more usage
scenarios

10. Clarify customer
requirements

4. Derive test
skeletons

5. Extend/adapt
test model

6. Execute
newly added
test behavior

7. Extend/adapt
specification model

8. Execute
specification

validation

9. Analyze
validation results

11. Test software 12. Test system

Stakeholder
Requirements

Usage
Scenarios
Skeletons

Usage
Scenarios

Test Model
Skeleton

Test Model

Specification
Model

Test Results
Requirements
Level

Test Results
Software Level

Test Results
System Level

Modeling Layer

TDSS

Validation Layer

Communication and Documentation Layer

test passed

all tests passed

test failed

test
failed

RO

RO RO RO

RO

CI

Requirements
Owner CI Customer

Interface SA System
Analyst VE Validation

Engineer

VE

SA SA

SA

VERO

VE VE

VE VE

VE

SA

Figure 2: Idealized SCIL Process

3.2 Modeling Layer
The clarified usage scenarios of the C&D layer are input to the
modeling layer. Within the modeling layer, the usage scenarios,
supplied in the gherkin syntax (as shown in Listing 2), are used
to systematically model SMLK specification scenarios (as shown in
Listing 1). In contrast to usage scenarios, the SMLK specification
scenarios each formalize requirements on all executions of the
system and, composed, yield an (over timemore andmore complete)
executable and testable model of the desired system.
1 When("^the signal \"([^\"]*) \" reads \"([^\"]*) \"$") {
2 arg0: String , arg1: String ->
3 // implement here}
4 Then("^the interlock motor shall be actuated to close the

interlock of the plug$") {
5 // implement here}

Listing 3: Generated test skeleton - based on Req2

As the first step in the modeling layer (4), the VE uses cucumber
to automatically derive test skeletons from usage scenarios. As an
example, a generated test skeleton for Req2 has the form shown
in Listing 3.

Now we enter the test-driven scenario specification (TDSS) sub-
process (as described in previous work [41]). In step (5), the val-
idation engineer completes the generated test skeletons to a test
that sends SMLK object events as input to an SMLK program and
formulates assertions on the reactions of that SMLK program.
1 When("^the signal \"([^\"]*) \" reads \"([^\"]*) \"$") {
2 arg0: String , arg1: String ->
3 if ((arg0 == "LockingRequest")&&(arg1 == "lock request"))
4 send(obc.LockingRequest(arg1))}
5 Then("^the interlock motor shall be actuated to close the

interlock of the plug$") {
6 receive(obc.actuateLockingMotor("close"))}

Listing 4: Modeling test behavior using SMLK events

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Wiecher et al.

For example the test skeleton for Req2 is enriched as described in
Listing 4.

In the When section we send the event obc.LockingRequest("
lock request"). In the Then section we expect the response of the
scenario program to be obc.actuateLockingMotor("close").

The receive function takes as argument an event or a set of
events that the scenario program is expected to emit next. The test
fails if the scenario program emits another event than one that is
expected by receive.

In addition to receive, tests can also use the function eventually

, which takes as argument an event or a set of events that the
scenario program is expected to emit at some point in the future. As
an optional argument, eventually can be passed an event or a set
of events that is forbidden while an expected event did not occur.
I.e., on eventually, the test repeatedly accepts any event from the
scenario program until either an expected event occurs (and then
the test progresses) or a forbidden event occurs and the test fails.

The modeling of the test behavior is carried out jointly by VE
and SA, to get a common understanding of the expected system
behavior.

In (6) the VE triggers the execution of the modeled test behavior.
Since the scenario specification model was not extended until now,
the test will likely fail. Consequently the SA specifies the expected
system behavior and extends the specification model (7).

For example, to get a passed test result for the test shown in
Listing 4, the SA has to add the SMLK scenario already shown
in listing 1 to the scenario specification. With the last TDSS step
the VE triggers all available usage scenarios and the underlying
test sequences (8) in order to detect whether the change to the
specification model had side-effect on other features.

This TDSS procedure is highly iterative; after several iterations
the tests and specification model describes the expected system
behavior sufficiently well and can be used as reference for the
validation of the implemented function on software and system
level.

Therefore, in the validation layer the test model created in the
modeling layer is used by the VE to trigger automated software
tests (11) and system tests (12).

If these tests fail on the validation layer, or when inconsisten-
cies are detected in the modeling layer, the issues are analyzed in
(9) jointly by SA, RO and VE. Inaccuracies, false assumption or
misunderstandings on requirements and implementation level are
highlighted in (9) and must be clarified also by including different
stakeholders via the CI (10).

3.3 Validation Layer
For the test of development artifacts, different tools and frame-
works are used in the automotive context. To realize an efficient
test automation in (11) and (12), we used the tool ContinoProva [22]
for our application of SCIL. ContionoProva is a commercial tool
that controls other tools (including Vector CANoe [39], iSystems
winIDEA [21], National Instruments Labview [36], TheMathworks
Matlab/Simulink [37]) via extensible services. In this way, test se-
quences can be specified consistently and across tools and executed
centrally. ContinoProva supports a location-independent test exe-
cution via a client/server architecture. A test specification is created

and executed via the client. The individual test steps are sent to
the ContinoProva server, which then executes them using the con-
nected tools. New tools can be added via the corresponding services,
allowing the validation layer to be adapted to the needs of the indi-
vidual development projects. The basic structure for the technical
implementation of the validation layer is outlined in Figure 3.

 ContinoProva

ClientCucumber/
JUnit

GNU Debug

CANoe

winIDEA

System under Test

Software under
Test

SMLK Events

Server

Service

Service

Service

Figure 3: Exchange of events between test model and imple-
mented system

For the application of SCIL, the test specification in the Con-
tinoProva client was replaced by the test model. This means that
the test model that was initially used for test-driven requirements
analysis can now be used to test development artifacts. For this
purpose the ContinoProva client was extended by a WebService.
Via this WebService, events from the test model are sent to the
ContinoProva client, which then sends concrete test steps to the
ContinoProva server, which in turn addresses the different tools
via the extensible services, thus enabling the execution of the tests.

The software test is possible via a software simulation envi-
ronment. The AUTOSAR [2] compliant program code of the ECU
function (here Plug Lock) is first compiled using a GCC compiler
and can thus be executed within the simulation environment on
the development platform on the basis of a GNU debugger. In the
further progress of development, the individual ECU functions are
integrated into the software system and compiled using a cross-
compiler. The software can then be tested on the target ECU using
different debug environments. SCIL uses the tool winIDEA [21]. If
the software is executed on ECU, a simulation of the vehicle envi-
ronment is also required to test the integrated software. The signals
necessary for the correct operation of the software are provided via
the CAN bus or other bus systems. SCIL uses CANoe [39], which
is widely used in the automotive industry.

3.4 Summary of the SCIL Results
The iterative approach, from informal stakeholder requirements
to the executable specification of scenarios and automated tests of
development artifacts supports the application of the BizDevOps
paradigm in the automotive industry, whereby the SCIL approach
is distinguished from the state of the art in the automotive industry
by four points:

• The customer is more closely integrated into product de-
velopment through a BDD-supported scenario specification.
The uniform and tool-supported documentation of behav-
ior in feature files via usage scenarios promotes a common

Scenarios in the Loop (SCIL) MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

understanding of the functionalities to be implemented and
thus creates transparency, which in general supports the
Adapt – Align – Define – Approve flow of the Biz phase.

• In conjunction with the test and specification model, the
usage scenarios are the basis for an automated requirements
analysis and provide important analysis results even before
the implementation phase. These analysis results can be dis-
cussed with the customer at an early stage, thus supporting
an early improvement of initially vague requirements and
building the foundation of the Plan – Code – Build – Test
flow of the Dev phase.

• On this basis, a clear and joint target picture is created for
the client and product developer, which can be checked by
the test model iteratively created in the analysis phase. This
test model can be used for automated software and ECU
testing and thus enables monitoring of the implementation
status. In this way, the objective manifested in the test model
drives the development and the test case creation does not
take place after (waterfall model) or parallel (V-model) to
the implementation phase. This provides the foundation for
the Release – Deploy – Operate – Monitor flow of the Ops
phase.

• In addition, SCIL supports a strongly iterative approach in
shortest possible loops within the three process layers. Thus,
new system behavior is documented incrementally over fur-
ther scenarios (C&D layer). The documented behavior is
incrementally modeled and automatically analyzed (model-
ing layer) and the implementation status is automatically
validated in short iterations (validation layer). Also the differ-
ent process layers are strongly connected. The defined usage
scenarios bridge the gap between C&D layer and modeling
layer (BizDev). The resulting test model connects modeling
layer and validation layer (DevOps) and the joint analyza-
tion of validation results by RO, SA and VE leads to valuable
feedback from modeling and validation layer to the original
stakeholder requirements (BizDevOps).

4 PROOF-OF-CONCEPT APPLICATION OF
SCIL

Based on our SCIL implementation and the previously introduced
SCIL process, we describe in this section the exemplary application
of SCIL in an industrial context at a tier 1 supplier company. This
application of the SCIL approach is based on the example intro-
duced in chapter 2.4. This example was initially elaborated together
with experts involved in the implementation of the function. The
individual SCIL steps were then run through by a member of our
team who has no in-depth knowledge of the plug lock function and
was not involved in the implementation of the function.

The implementation was largely completed at this point, so it
was possible to include also the validation layer in the proof-of-
concept study. Thus it was possible to run through the complete
chain of test of the development artifact up to the stakeholder
requirements and assess how the SCIL approach supports on the
individual layers.

The goal of this proof-of-concept study was to assess the feasibil-
ity of the SCIL approach. The results were used as a basis to discuss

the approach with further experts who were not involved in SCIL
development, but in the development of the Plug Lock function.

Initially we ran the steps in the C&D layer. Based on the require-
ments in Table 1 and the described context of the function, three
interfaces were identified (1) (see step numbers in Fig. 2). First, the
CAN message, which is used by the OBC to receive signals from the
Application ECU for unlocking or locking the charging plug. Sec-
ond, the motor control output signal, which is used by the OBC to
directly control the locking actuator of the charging socket. Third,
the value of a read-back contact of the connector locking is read in
by the OBC, which indicates the locking state.

Based on this structural model, a feature file was created (2) for
the function Plug Lock and the requirements described in Table 1
were specified as scenarios within this file (3). Result of the activities
in the C&D layer are the usage scenarios shown in Listing 5.
1 Feature: Plug Lock
2 Scenario: no lock request (Req1)
3 When the signal "LockingRequest" reads "no lock

request"
4 Then the interlock motor shall not be actuated
5 ...
6
7 Scenario: finish actuation (Req4)
8 Given the interlock motor is actuated to close the

interlock of the plug
9 When the signal "LockingRequest" reads "no request"

10 Then the interlock motor shall not interrupt the
active plug lock actuation

11
12 Scenario: confirm end position (Req5)
13 Given the interlock motor is actuated to close the

interlock of the plug
14 When the locking motor reaches an end position
15 Then this must be confirmed in order to stop the

motor actuation
16 ...

Listing 5: Feature Plug Lock in Cucumber

Within these first three steps, it already turns out that the uni-
form behavior specification can create a common understanding of
the expected system behavior. The scenarios defined in (3) charac-
terize a certain behavior under specific conditions in a particular
environment or situation, which is supported by specifying the
systems interfaces in (1) and defining separate features in (2).

As mentioned before, the implementation of the function was
largely completed at the time of evaluation and the requirements
specification already contained a very detailed description of the
function. A comparison of the already existing requirements with
the requirements converted into usage scenarios indicated that the
procedure for this function scales and that the structured docu-
mentation in usage scenarios supports the communication with
the customer (10). One problem was that with a high number of re-
quirements, the dependencies among the scenarios could no longer
be overlooked manually. For this reason, we started to dive into the
tool supported modeling layer, to start with the test driven behavior
modeling and thereby have a better understanding of the interplay
of the requirements.

Based on the generated test model skeleton (4), Listing 6 shows
the result of the test case modeling (5) for Req5 after the first TDSS
iteration. In the Given section the preconditions were specified
first. Here the external event obc.LockingRequest("lock request")

is sent to the scenario program (line 2). This event models the CAN
message that is sent by the Application ECU to the OBC.

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Wiecher et al.

1 Given("^the interlock motor is actuated to close the
interlock of the plug$") {

2 send(obc.LockingRequest("lock request"))
3 receive(obc.actuateLockingMotor("close"))}
4 When("^the locking motor reaches an end position$") {
5 send(obc.endPositionReached ())}
6 Then("^this must be confirmed in order to stop the motor

actuation$") {
7 receive(obc.lockingMotorStopped ())}

Listing 6: Test-case for Req5

In line 3 we expect that the scenario program will send an event
which indicates that interlock will be closed, whereby the precon-
dition is fulfilled. If this event occurs, we enter theWhen section
and send the event obc.endPositionReached() (line 6). This event
models that the read-back connector indicates that an end position
is reached. Next, in line 9 within the Then section, we expect that
the scenario program stops the motor actuation.

For the first TDSS test run, all tests of the function Plug Lock,
including the above test-case, showed a negative result. This was
expected, because the system behavior had not yet been modeled.
Consequently, we modeled the missing system behavior (6) as al-
ready described in Sect. 3.2 in order to react according to the behav-
ior required in the test case, which led to the test results shown in
Fig. 4. The modeling of the other test cases and the expected system
behavior was done in the same way until all test cases showed
positive results.

Figure 4: Execute test behavior (step 8)

However, in parallel to the refinement of the test model and the
usage scenarios, the test model could already be used to check the
implementation status on the software (11) and system level (12)
within the validation layer.

For this purpose we used the tools described in chapter 3.3. The
test behavior previously described in Listing 6 was now used to test
the AUOTSAR-compliant implementation of the Plug Lock function.

Within the validation layer the external events were no longer
sent to the specification model, but via the WebService to Contino-
Prova. The SMLK events of the test model were then sent to the
software simulation environment via ContinoProva’s tool-specific
services. The resulting behavior of the implemented software is
shown in Fig. 5.

The figure shows the value changes over time of four variables,
and describes the behavior of the software in response to external
events of the test model. The first variable LockingControl is set
to 1 by the test model and signals that there is a request for con-
nector locking. The software responds to this event by setting the
MotorControl variable to 1, which corresponds to an active locking
control. This response corresponds to the behavior described in the
Given section of the usage scenario (see Listing 6). The locking actu-
ator is now being actively controlled. The next event from the test

Figure 5: Plot of software simulation (Req5)

model now signals the end position of the connector locking via the
variable ReadbackStatus (When), whereupon the software stops the
motor control (Then). The variables LockingControl, ReadbackStatus
and MotorControl describe the behavior of the software function
based on its external interfaces. Where the input signals are set
by the test model and the output signal is evaluated by the test
model. The fourth variable StateSM shows the individual states of
the implemented software as reacting to the changing input signals.
As this variable represents an implementation specific aspect of the
software that is not subject of the requirements description, values
of this variable are not tested here.

We could now analyze these test results and compare them with
the behavior recorded previously when testing the specification
model (step 8). For the test of Req5 we obtained the same results
in the validation layer as before in the modeling layer, which corre-
sponds to the test results shown in Fig. 4.

After this first successful iteration of the overall process, fur-
ther TDSS iterations in the modeling layer and the validation of
the implementation could be continued. After several iterations,
all requirements described in Table 1 were sufficiently described
via test and specification models and the implementation of the
function was shown to be complete via software validation.

Since the implementation of the function already existed, a test
of the function integrated on the ECU was also possible. Due to
the tools used by the SCIL framework and the resulting decoupling
of the test model and tool-specific implementation details, only
the mapping of the SMLK events had to be adapted for testing the
function integrated on the ECU (see Sect. 3.3). In the ECU, the vari-
able LockingControl of the software function is replaced by a CAN
signal that is sent to the ECU via ContinoProva, the corresponding
service and finally via the CANoe tool.

5 EVALUATION & DISCUSSION
After executing a proof-of-concept iteration of the SCIL process,
the approach was discussed with experts on different levels (senior
manager, project manager, software engineer) at a tier 1 supplier
company. In order to highlight differences to the established ap-
proach, difficulties in implementing the function were inquired first.
These key points emerged:

Scenarios in the Loop (SCIL) MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

• Vague requirements: At the start of the software imple-
mentation, requirementswere available in an under-specified
form. In the course of the implementation it turned out that
a number of constraints, error cases, etc. were not taken
into account and were only further elaborated during the
implementation phase.

• Stakeholder integration: For the further concretization
of the requirements to be implemented, to a large extent
further information from the client and other stakeholders
was necessary.

• Manual requirements analysis: Scenarios were also used
here to further concretise the behavior. There is currently a
large number of scenarios and there are still contradictions
between requirements that were not noticed during the doc-
umentation and manual analysis of the requirements and
only became clear in the implementation phase.

After going through the SCIL approach with the experts directly
involved in the realization of the Plug Lock function in different
roles, the general feedback was positive: the SCIL framework with
the described process layers and with appropriate tool support
addresses the existing challenges very well.

Nevertheless, it was unclear whether the SCIL approach can
support the development of complex functions in an agile project
environment and lead to efficiency improvements. The question
arose whether the additional effort for formalizing requirements is
reasonable, or whether the established approach with a compara-
tively late documentation and coordination of the desired system
behavior is ultimately just as efficient in this context. For this pur-
pose, further evaluations must be carried out on the basis of this
work.

It was also questionable whether the way of formalizing re-
quirements using SMLK, which is supplemented within the SCIL
framework with the cucumber tooling, will meet with sustainable
acceptance in the automotive sector. In principle, acceptance can
be expected if the aforementioned increase in efficiency or quality
can be proven. The general acceptance must be examined in further
evaluations.

However, at the current point in time we already see that with
the technologies and methods combined in SCIL (TDSS, SMLK,
BDD, Cucumber), based on [41] [14] [12] [5], a formal, intuitive and
iterative development work is promoted. This iterative development
is close to the project work in industrial practice. In addition, the
test model and the tools used within the validation layer allow
automated tests to be performed. There is significant potential
for increasing efficiency here compared to downstream test case
specification and execution.

6 RELATEDWORK
To our best knowledge, there is only one commercial tool (Argosim
Stimulus [6]) that takes up the idea of an early automated require-
ments analysis (Requirements in the Loop). Stimulus enables the
simulation of textual requirements in combination with state ma-
chines and a component architecture. In contrast to Stimulus, SCIL
supports an agile approach based on BDD, which addresses iterative
system development in industrial practice and integrates the client
more closely into product development. In addition to requirements

analysis, Stimulus enables Model in the Loop (MIL) and Software
in the Loop (SIL) testing, whereas SCIL also addresses validation at
ECU level via the validation layer.

Drave et al. describe a SCIL-like approach [7]. Motivated by the
inadequate representation of an agile development process for com-
plex systems by the V-Model, Drave et al. propose a specification
method for requirements, design, and test methodology (SMArDT)
based on SysML. Here too, different process layers are introduced.
Customer requirements are captured via use cases, the behavior is
described via activity and sequence diagrams and formalized via
object constraint language to analyze requirements and generate
test cases. In contrast to SMArDT, SCIL aims to reduce the effort for
formalizing requirements by using SMLK along with TDSS and the
BDD approach in conjunction with close feedback loops between
the process layers. This is to take into account the results of Liebel
et al. [26] [27], which show that established model-based methods
for requirements analysis (as e.g. object constraint language) in the
automotive context do not find broad acceptance by practitioners.
Based on this, SCIL follows a more intuitive modeling approach and
integrates the customer more closely into the product development.

The approach to describe complex behavior via scenarios is
not new. Other work shows that it is beneficial to use scenarios to
describe complex system behavior [35] and to validate this behavior
based on scenarios [4] [24]. We take up these findings and present
the SCIL Framework, a tool with which scenarios can be formalized
in an application-oriented manner, thus supporting collaborative
development in an cross-disciplinarly automotive context.

7 CONCLUSION AND OUTLOOK
In this paper we describe the SCIL framework. The chosen process
layers paired with the used agile methods and appropriate tool
support promote cross-disciplinary development work. At the core
of this is the continuous consultation and analysis of behavior
requirements to create high quality requirements and prevent costly
development iterations. At the same time, the test model enables an
automated validation of development artifacts, whereby validation
is placed at the center of the development. The validation drives
the modeling and implementation phase and is not understood as a
downstream process step.

With the implementation of the SCIL framework, modeling tech-
niques are used [14] [12] [5] [10] [30], which are not widely adopted
in the automotive context so far. In future work, the SCIL framework
will be used to further investigate its profits in industrial practice.
Especially the questions resulting from the first SCIL application
(Sect. 4) and the expert feedback (Sect. 5) shall be investigated by
applying SCIL in further development projects. Based on this and
the early results described in this paper, we plan to conduct a com-
prehensive evaluation of the SCIL approach in future work.

REFERENCES
[1] Albert Albers, Armin Kurrle, and Georg Moeser. 2014. Modellbasiertes An-

forderungsmanagement von Systems-of-Systems am Beispiel des vernetzten
Fahrzeugs. Tag des Systems Engineering (2014), 371–382. https://doi.org/10.3139/
9783446443761.037

[2] AUTOSAR. 2019. AUTOSAR - Enabling Innovation. https://www.autosar.org/
[3] Christian Brenner, Joel Greenyer, Jörg Holtmann, Grischa Liebel, Gerald

Stieglbauer, and Matthias Tichy. 2014. {ScenarioTools} Real-Time Play-Out for
Test Sequence Validation in an Automotive Case Study. In Electronic Communi-
cations of the EASST, Vol. 67. EASST.

https://doi.org/10.3139/9783446443761.037
https://doi.org/10.3139/9783446443761.037
https://www.autosar.org/

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Wiecher et al.

[4] Hans Buwalda. 2004. Soap Opera Testing. In Testing & Analysis. 30–37.
[5] Werner Damm and David Harel. 2001. {LSCs}: Breathing Life into Message

Sequence Charts. In Formal Methods in System Design, Vol. 19. 45–80.
[6] DassaultSystems. 2020. STIMULUS - Requirement simulation – CATIA – Dassault

Systèmes®. https://www.3ds.com/products-services/catia/products/stimulus/
[7] Imke Drave, Steffen Hillemacher, Timo Greifenberg, Stefan Kriebel, Evgeny

Kusmenko, Matthias Markthaler, Philipp Orth, Karin Samira Salman, Johannes
Richenhagen, Bernhard Rumpe, Christoph Schulze, Michael vonWenckstern, and
Andreas Wortmann. 2019. SMArDT modeling for automotive software testing.
Software - Practice and Experience 49, 2 (2019), 301–328. https://doi.org/10.1002/
spe.2650

[8] Aline Dresch, Daniel Pacheco Lacerda, and José Antônio Valle Antunes. 2015.
Design science research: A method for science and technology advancement. 1–161
pages. https://doi.org/10.1007/978-3-319-07374-3

[9] Tobias Düser. 2010. X-in-the-Loop - an integrated validation framework for vehicle
development using powertrain functions. Ph.D. Dissertation. https://doi.org/10.
5445/IR/1000020671

[10] A Dyck, R Penners, and H Lichter. 2015. Towards Definitions for Release Engi-
neering and DevOps. In 2015 IEEE/ACM 3rd International Workshop on Release
Engineering. 3.

[11] Dorothee Feldmüller. 2018. Usage of agile practices in Mechatronics System
Desing - Potentials, Challenges and Actual Surveys. In 2018 19th International
Conference on Research and Education in Mechatronics (REM). IEEE, 30–35.

[12] Joel Greenyer, Daniel Gritzner, Timo Gutjahr, Florian König, Nils Glade, Assaf
Marron, and Guy Katz. 2017. ScenarioTools – A tool suite for the scenario-based
modeling and analysis of reactive systems. Science of Computer Programming
149, Supplement C (2017), 15–27. https://doi.org/10.1016/j.scico.2017.07.004

[13] Joel Greenyer, Maximilian Haase, Jörg Marhenke, and Rene Bellmer. 2015. Eval-
uating a formal scenario-based method for the requirements analysis in au-
tomotive software engineering. 2015 10th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, ESEC/FSE 2015 - Proceedings (2015), 1002–1005.
https://doi.org/10.1145/2786805.2804432

[14] David Harel, Assaf Marron, and Gera Weiss. 2012. Behavioral programming.
Comm. ACM 55, 7 (2012), 90–100. https://doi.org/10.1145/2209249.2209270

[15] Jürgen Häring, Joachim Löchner, and Thomas Schöpfner. 2018. Die Zukunft im
Griff, Virtualisierte Tests und XiL für automatisiertes Fahren Fahrerassistenzsys-
teme. Automobil Elektronik (2018).

[16] Jörg Holtmann, Ruslan Bernijazov, Matthias Meyer, David Schmelter, and Chris-
tian Tschirner. 2016. Integrated and iterative systems engineering and software
requirements engineering for technical systems. Journal of Software: Evolution
and Process 28, 9 (2016), 722–743. https://doi.org/10.1002/smr.1780

[17] John Hutchinson, Jon Whittle, and Mark Rouncefield. 2014. Model-driven engi-
neering practices in industry: Social, organizational and managerial factors that
lead to success or failure. Science of Computer Programming 89 (2014), 144–161.
https://doi.org/10.1016/j.scico.2013.03.017

[18] IBM. 2020. IBM Engineering Requirements Management DOORS Family. https:
//www.ibm.com/ca-en/marketplace/requirements-management

[19] IEEE Standards Board. 1990. IEEE Standard Glossary of Software Engineering
Terminology. Technical Report. 84 pages.

[20] International Organization for Standardization (ISO). [n.d.]. Road vehicles –
Functional safety – Part 6: Product development at the software level, ISO 26262-
6:2018.

[21] ISystem. 2020. winIDEA - IDE, Debug and Trace Tool - iSYSTEM - En-
abling Safer Embedded Systems. https://www.isystem.com/products/
winidea-ide-debug-and-trace-tool.html

[22] ITPowerSolutions. 2020. ContinoProva | ITPS DE. https://itpower.de/de/produkt/
continoprova/

[23] Andrej Janzen, Axel Hoffmann, and Holger Hoffmann. 2013. Working Paper
Series Chair for Information Systems Anforderungsmuster im Requirements
Engineering. (2013).

[24] Cem Kaner. 2003. An Introduction to Scenario Testing. , 10 pages.
[25] G Liebel. 2016. Model-Based Requirements Engineering in the Automotive Indus-

try: Challenges and Opportunities. Technical Report. Chalmers University of
Technology and Goeteborg University, Goeteborg.

[26] Grischa Liebel, Matthias Tichy, and Eric Knauss. 2019. Use, potential, and show-
stoppers of models in automotive requirements engineering. Software and Systems
Modeling 18, 4 (2019), 2587–2607. https://doi.org/10.1007/s10270-018-0683-4

[27] Grischa Liebel, Matthias Tichy, Eric Knauss, Oscar Ljungkrantz, and Gerald
Stieglbauer. 2018. Organisation and communication problems in automotive
requirements engineering. Requirements Engineering 23, 1 (2018), 145–167. https:
//doi.org/10.1007/s00766-016-0261-7

[28] Udo Lindemann, Albert Albers, Matthias Behrendt, Simon Klingler, and Kevin
Matros. 2016. Verifikation und Validierung im Produktentstehungsprozess. Hand-
buch Produktentwicklung (2016), 541–569. https://doi.org/10.3139/9783446445819.
019

[29] Parastoo Mohagheghi and Vegard Dehlen. 2008. Where Is the Proof? - A Review
of Experiences from Applying MDE in Industry. In Model Driven Architecture

– Foundations and Applications, Ina Schieferdecker and Alan Hartman (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 432–443.

[30] Eveline Oehrlich. 2020. What is BizDevOps? | The Enterprisers Project. https:
//enterprisersproject.com/article/2019/9/devops-what-is-bizdevops

[31] Valerio Panzica La Manna, Itai Segall, and Joel Greenyer. 2015. Synthesizing tests
for combinatorial coverage of modal scenario specifications. In 2015 ACM/IEEE
18th International Conference on Model Driven Engineering Languages and Systems,
MODELS 2015 - Proceedings. 126–135. https://doi.org/10.1109/MODELS.2015.
7338243

[32] Christoph Schmittner, Gerhard Griessnig, and Zhendong Ma. 2018. Status of the
Development of ISO/SAE 21434. In Systems, Software and Services Process Im-
provement, Xabier Larrucea, Izaskun Santamaria, Rory V O’Connor, and Richard
Messnarz (Eds.). Springer International Publishing, Cham2018, 504–513.

[33] Sarah A. Sheard. 1996. Twelve Systems Engineering Roles. INCOSE International
Symposium 6, 1 (1996), 478–485. https://doi.org/10.1002/j.2334-5837.1996.tb02042.
x

[34] SmartBearSoftware. 2020. BDD Testing & Collaboration Tools for Teams | Cu-
cumber. https://cucumber.io/

[35] A. Sutcliffe. 2003. Scenario-based requirements engineering. Proceedings of the
IEEE International Conference on Requirements Engineering 2003-Janua, October
2003 (2003), 320–329. https://doi.org/10.1109/ICRE.2003.1232776

[36] TexasInstruments. 2020. What is LabVIEW? - NI. https://www.ni.com/en-ca/
shop/labview.html

[37] TheMathworks. 2020. Simulink - Simulation and Model-Based Design - MATLAB
& Simulink. https://www.mathworks.com/products/simulink.html

[38] VDAQMCWorking Group 13 / Automotive SIG. 2015. Automotive SPICE Process
Assessment: Reference Model. (2015), 132. http://www.automotivespice.com/
fileadmin/software-download/Automotive{_}SPICE{_}PAM{_}30.pdf

[39] VectorInformatik. 2020. CANoe – ECU & Network Testing | Vector. https:
//www.vector.com/int/en/products/products-a-z/software/canoe/

[40] Andreas Vogelsang. 2020. Feature dependencies in automotive software systems:
Extent, awareness, and refactoring. Journal of Systems and Software 160, 2019
(2020), 1–37. https://doi.org/10.1016/j.jss.2019.110458

[41] Carsten Wiecher, Joel Greenyer, and Jan Korte. 2019. Test-Driven Scenario
Specification of Automotive Software Components. 2019 ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C) (2019), 12–17. https://doi.org/10.1109/MODELS-C.2019.00009

https://www.3ds.com/products-services/catia/products/stimulus/
https://doi.org/10.1002/spe.2650
https://doi.org/10.1002/spe.2650
https://doi.org/10.1007/978-3-319-07374-3
https://doi.org/10.5445/IR/1000020671
https://doi.org/10.5445/IR/1000020671
https://doi.org/10.1016/j.scico.2017.07.004
https://doi.org/10.1145/2786805.2804432
https://doi.org/10.1145/2209249.2209270
https://doi.org/10.1002/smr.1780
https://doi.org/10.1016/j.scico.2013.03.017
https://www.ibm.com/ca-en/marketplace/requirements-management
https://www.ibm.com/ca-en/marketplace/requirements-management
https://www.isystem.com/products/winidea-ide-debug-and-trace-tool.html
https://www.isystem.com/products/winidea-ide-debug-and-trace-tool.html
https://itpower.de/de/produkt/continoprova/
https://itpower.de/de/produkt/continoprova/
https://doi.org/10.1007/s10270-018-0683-4
https://doi.org/10.1007/s00766-016-0261-7
https://doi.org/10.1007/s00766-016-0261-7
https://doi.org/10.3139/9783446445819.019
https://doi.org/10.3139/9783446445819.019
https://enterprisersproject.com/article/2019/9/devops-what-is-bizdevops
https://enterprisersproject.com/article/2019/9/devops-what-is-bizdevops
https://doi.org/10.1109/MODELS.2015.7338243
https://doi.org/10.1109/MODELS.2015.7338243
https://doi.org/10.1002/j.2334-5837.1996.tb02042.x
https://doi.org/10.1002/j.2334-5837.1996.tb02042.x
https://cucumber.io/
https://doi.org/10.1109/ICRE.2003.1232776
https://www.ni.com/en-ca/shop/labview.html
https://www.ni.com/en-ca/shop/labview.html
https://www.mathworks.com/products/simulink.html
http://www.automotivespice.com/fileadmin/software-download/Automotive{_}SPICE{_}PAM{_}30.pdf
http://www.automotivespice.com/fileadmin/software-download/Automotive{_}SPICE{_}PAM{_}30.pdf
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://doi.org/10.1016/j.jss.2019.110458
https://doi.org/10.1109/MODELS-C.2019.00009

	Abstract
	1 Introduction
	2 Background
	2.1 Automotive Systems Engineering
	2.2 BizDevOps
	2.3 Model-based Requirements Engineering
	2.4 Example of Application
	2.5 Scenario Modeling Language for Kotlin (SMLK)

	3 Scenarios in the Loop (SCIL)
	3.1 Communication and Documentation (C&D) Layer
	3.2 Modeling Layer
	3.3 Validation Layer
	3.4 Summary of the SCIL Results

	4 Proof-of-Concept Application of SCIL
	5 Evaluation & Discussion
	6 Related Work
	7 Conclusion and Outlook
	References

