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Abstract—Multi-Robot systems in automotive are
safety-critical systems that consist of collaborating-aware robots
and components that interact with external components, the
environment, or humans at run-time. This implies a significant
complexity for the system engineer to design, model, validate
the system, and optimize the cycle time, including considering
unexpected events at run-time. This paper addresses this
challenge by describing a model-driven engineering approach
that formally designs the system under the consideration of
uncertainties and at run-time optimizes the system actions
using learning-based approaches. We implemented this
approach in an industrial-inspired case study of a spot-welding
multi-robot cell. Based on the system requirements, we
generate valid system strategies that consider unexpected events
such as robot interruptions and failures. Considering movement
and interruption time models, we implemented a reinforcement
learning method to optimize system actions at run-time. We
show that via simulations and learning, our approach can be
used to synthesize time-efficient schedules for robot task
assignments that improve the overall cycle time.

Index Terms—Motion planning, Task planning, Choreography
planning, Learning-based scheduling under uncertainty

I. INTRODUCTION

In multi-robot systems, scheduling, assigning robot tasks,
and planning robot motions is challenging [1]. At run-time,
human interventions for repairs due to malfunctions,
manufacturing process changes, or time constraints can
increase the cycle time and robot cell dead times.
Considering strict commissioning time constraints, it is
challenging to consider uncertainties in practice.

Model-Driven Engineering (MDE) techniques and
synthesis tools offer the possibility for engineers to model
reactive systems and deal with the high complexity of the
system requirements [2]–[4]. Recently, SPECTRA, a
specification language for reactive system design, has been
proposed [4]. These approaches provide first-solution
insights but must be completed since they do not consider
time and stochastic constraints.

This paper describes an MDE approach that defines how
we compute robot trajectories during system design and
generate models for system requirements and execution.
First, we leverage the manufacturing process description and

requirements, including the virtual model of the robot cell to
derive optimal robot trajectories and the formal requirement
specification. In the digital twin (DT) process [5], even
already existing real production cells can be used to produce
the virtual production cell, and thus considered in our
approach. We implement an iterative A* algorithm to quickly
generate cost-optimal robot trajectories for each robot given
its working range. Through trajectory simulations, joint
trajectories leading to collisions are identified and formally
described along with the system requirements in the formal
specification model. Second, using reactive synthesis [6], [7],
we build a correct-by-construction robotic system. This
represents the reactive system implementation, called
controller, that encodes valid strategies w.r.t. defined
requirements and under the consideration of unexpected
events. The controller is executable and can be integrated
into a simulation loop. Third, the system execution is
optimized at run-time using reinforcement learning (RL)
approaches. The RL-agent learns from simulations or
experience and optimizes the decision-making system.

This paper is organized as follows. In Sect. II, we define
the terminologies, foundation concepts used in this paper, and
describe related works. Sect. III describes our methodology.
We evaluate our approach in Sect. IV, and conclude in Sect. V.

II. BACKGROUND & RELATED WORK

A. Background

1) Choreography Planning: A robot choreography is
defined by the joint execution of robot trajectories inside a
robot cell during a manufacturing process cycle [8]. We
define choreography planning as the task of defining the
execution timeline of each robot trajectory in the robot cell.

2) Reactive Synthesis: The process of building a
correct-by-construction reactive system from its temporal
logic specification is called reactive synthesis [9].

The linear temporal logic defines modal temporal logic
using time-modalities to specify a reactive system
behavior [10]. LTL is defined over a set of atomic



propositions, logical operators ¬, ∨, and temporal operators
X (next), U (until) [7]. The LTL syntax is defined as follows:

φ := p | ¬ φ | φ ∨ φ | X φ | φ U φ |

where p is an atomic proposition.
A computation defines a sequence of truth propositions, i.e.,

ρ = ρ0ρ1 · · · ∈ 2AP , where ρi consists of atomic propositions
that hold at time instant i.

A LTL formula φ is satisfiable if a computation ρ can be
found so that ρ |= φ, i.e., φ is true at ρ0.

GR(1) defines a subset of LTL having an efficient synthesis
algorithm [6], [7]. A GR(1) specification is made up of (1)
initial assumptions and guarantees that define initial states,
(2) safety assumptions and guarantees considering the current
state along with the next state, and (3) justice assumptions and
guarantees that define assertions that keep infinitely often [11].

SPECTRA is a specification language for reactive
systems [4]. This specification language implements the
GR(1) synthesis algorithm.

3) Reinforcement Learning: Q-learning: Q-learning [12]
is a model-free RL approach that does not require an
environment transition model to compute an optimal policy.
The RL-agent through a trial-and-error principle interacts
with its environment and thereby learns how to efficiently
take actions to reach its goal, e.g., a terminal state, and
improves its expected accumulated reward. More
interestingly, Q-learning suits our problem as it can deal
with probabilistic transition-based systems.

We denote S as the set of states and A as the set of actions.
Given a state s ∈ S, we define A(s) as the subset of A
that consists of possible actions in state s. The Q-learning
algorithm applies the temporal difference learning approach
based on the Bellman-equation [13], as described below.

Q(s, a) = (1− α)Q(s, a)+α

(
r + γ max

a′∈A(s′)
Q(s′, a′)

)
(1)

where:
• Q(s, a) is the Q-value of action a ∈ A(s) in s ∈ S
• r is the reward obtained by applying the action a
• α ∈ [0, 1] is the learning rate
• γ defines the discount factor
• s′ is the new state reached by applying action a.

B. Related Work

To address the large variances of robot execution time, the
research work in [14] proposed an approach that provides a
set of trajectories along with execution time constraints for
each task [15]. At run time, and according to the time
constraints, trajectories are selected, and tasks are
(re)scheduled based on the uncertainty of robot movement
time [16]. These approaches do not consider task
dependencies or unexpected events as we do.

In DT area, the research work in [17] integrated process
planning and scheduling with service-based production
systems using a Deep-Q-network. The environment behavior
is encoded using a Markov Decision Process model that

defines action rewards, and the RL-agent model is updated
according to stochastic environment events. Instead of
learning correct actions, our approach leverages the GR(1)
controller that provides valid, requirement-compliant actions
for the RL-agent. Then, the RL-agent learns a policy to
select cost-efficient actions at run time.

The paper [18] proposed an approach to learn the action
costs and correlation between actions based on previous action
executions. Action correlations identify actions that impact the
execution time of other actions. The task planner learns to
select the least correlated joint action to optimize the joint
plan execution time. The approach does not cover unexpected
behavior of the environment.

III. METHODOLOGY

Our development process to synthesize and execute a
controller-based robot cell is illustrated in Fig. 1. We
describe the process in four steps as follows.

A. Requirements Formalization

Given a robot cell description and the related informal
requirements, the robotics expert models the robot cell using
a robot cell simulation tool and CAD models, such as ABB
RobotStudio1. The requirements include the robot description
and the manufacturing process that describes each task and
its dependencies. The robot expert designs the tasks and the
robots, including their home position, the workpiece, the part
positioner, and other devices and objects (robot control unit
case, fences). A near-to-real robot cell is required for the
next step. If the real robot cell to be designed already exists,
a DT process [5] can be applied to build a virtual robot cell
model.

We developed a DSL, namely RCSML [19], for the
formal specification of robot cell requirements. Thus,
robotics experts can construct reactive robotic systems
without prior knowledge of GR(1)-based specifications. In
fact, the requirement model (RCSML) and the reactive
specification (SPECTRA) are derived from the robot cell
virtual model. Our case study models can be found in [20].
The end user does not need to manually change the
specifications. If the GR(1) specification is not realizable, the
end user must amend the robot cell virtual model and
eventually the requirements. The models will be
automatically updated accordingly. Moreover, RCSML is an
easy human-readable model that offers a high abstraction
level for multi-robot cell systems. At the early design stage,
and even without a simulation tool, the end users can check
the informal requirement feasibility or verify some system
properties beforehand.

B. Trajectories Computation

Instead of the classical A* algorithm [21], we
implemented an iterative A* search algorithm that applies
A* over iterations and progressively decreases the step size
until a path is found. The step is initialized with the distance

1https://new.abb.com/products/robotics/de/robotstudio/robotstudio-desktop

https://new.abb.com/products/robotics/de/robotstudio/robotstudio-desktop
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Fig. 1. The methodology development process

from the start to the final node. The step is used to find the
successors of a given point in 3D space. Each iteration
applies the A* algorithm to each segment with a collision.
The first iteration has one segment that consists of the start
and end points. At the end of an iteration, if we find a
collision-free, cost-efficient path for all segments, the
iteration ends. Otherwise, the next iteration applies A* on all
segments with collision and a step size divided by two. For
collision avoidance, we define the minimum distance
between the robot and obstacles as an input (> 0). At the
end of the iterations, the solution path is constructed using
the paths found during the iterations.

The execution of trajectories and tasks permits us to
capture the time models of the robot movements and tasks,
identify potential collisions that can occur by simultaneous
executions of all pairs of different robot trajectories. The
identified collision risks are formally defined as collision
constraints in the robot cell requirement model.

C. Robotic System Reactive Specification

We build a reactive controller for the robotic system. Indeed,
based on the formal robot cell requirement model, we derive
the GR(1) specification using SPECTRA [4] that describes the
system behavior, constraints, and environment behavior. The
system behavior states how the system can react or which
actions can be selected to respond to the environment behavior
with respect to the system requirements and constraints. The
environment behavior includes uncontrollable events that may
occur during the robot cell operation, e.g., robot interruptions
or repairs. We leverage SPECTRA analysis and synthesis to
check if the SPECTRA specification is realizable, and generate
an executable GR(1) controller that implements the system
strategy.

D. Integrated Controller Execution

We integrate the executable controller with an RL
technique, namely Q-learning, to optimize the system
strategy at run-time. Indeed, the controller is enriched with

the robot movement and task time models, along with the
interruption time and probabilistic interruption models. These
data permit through episode iterations to evaluate the system
actions provided by the GR(1) controller. Given an
environment state, the RL-agent learns the optimal policy to
select among the controller actions the most promising
action.

IV. RESULTS AND DISCUSSION

We experimented on a PC with Windows 10 on a x64 CPU
Intel(R) Core(TM) i7-11850H, with RAM 32.0 GB.

A. Iterative A*

Our iterative A* approach finds the optimal path, if it
exists, with the fewest via-points on the path from the initial
to the goal node. The number of via-points is inversely
proportional to the step size in the A* search. This implies
fewer computations in the search algorithm (i.e., iterations
over successor nodes), and thus the time and space
complexity of the algorithm is improved compared with the
classical A*. Moreover, the classical A* can fail to find a
solution path may be because the step size is not well
chosen (or too high). The user then may select a lower step
that will be applied globally on the search. Our approach
systematically identifies the segment where the solution
cannot be found and applies a local search with a decreased
step.

B. Optimized Controller Evaluation

For our case study [20], we executed 5000 cycles (number
of produced parts) with some interruption probabilities
observed in our car body shop. We optimized the SPECTRA
controller execution with Monte Carlo Tree Search (MCTS)
and Q-learning, and compared each optimized controller
with the controller provided by SPECTRA. Tab. I shows the
experiment results. The columns Alg., p denotes the
controller algorithm used and the interruption probability of
robot task assignment. Column Imp. shows the cycle time



improvement in percentage compared with the SPECTRA
algorithm. The cycle time-related columns Avg., Min.,
Max, and Med. show the average, minimum, maximum, and
median values. The results show that the Q-learning-based
controller provides the best performance in each experiment.
We can say that the RL-agent can efficiently plan and
execute task sequences and react to unexpected events of the
environment by optimally readapting the task schedule.

TABLE I
CYCLE TIME RESULTS WITH 5000 CYCLES

Alg. p Avg. Imp. (%) Min. Max. Med.

Spectra
0

33.00 19.47 63.05 32.55
MCTS 31.07 5.8 17.01 59.81 30.70
QL 24.55 25.6 16.19 48.01 23.69

Spectra
0.005

35.56 19.88 177.40 32.76
MCTS 33.37 6.2 17.01 172.28 30.95
QL 21.87 38.5 16.03 170.78 16.03

Spectra
0.010

38.30 19.64 174.94 33.23
MCTS 35.75 6.7 17.67 169.04 31.20
QL 24.88 35.0 16.52 159.38 16.52

V. CONCLUSION

This paper presented an MDE approach that leverages
RL-techniques for the flexible planning and optimized
execution of multi-robot choreographies. Our approach
supports robotics experts in correct-by-constructing robot cell
systems using GR(1) specifications and RL for system
execution optimization.

We consider extending our approach to additional, more
expressive RCSML concepts, e.g., dynamic or conditional
task dependencies. We would like to highlight the
requirement inconsistencies in the RCSML editor and the
robot cell simulator environment.
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