
Multi-Robot Motion and Task Planning in Automotive Production
Using Controller-based Safe Reinforcement Learning

Eric Wete
Leibniz University Hannover

Hannover, Germany
eric.roslin.wete.poaka@stud.uni-hannover.de

Joel Greenyer
FHDW Hannover

Hannover, Germany
joel.greenyer@fhdw.de

Daniel Kudenko
Leibniz University Hannover

Hannover, Germany
kudenko@l3s.de

Wolfsgang Nejdl
Leibniz University Hannover

Hannover, Germany
nejdl@kbs.uni-hannover.de

ABSTRACT

Using synthesis- and AI-planning-based approaches, recent works
investigated methods to support engineers with the automation of
design, planning, and execution of multi-robot cells. However,
real-time constraints and stochastic processes were not well
covered due, e.g., to the high abstraction level of the problem
modeling, and these methods do not scale well. In this paper, using
probabilistic model checking, we construct a controller and
integrate it with reinforcement learning approaches to synthesize
the most efficient and correct multi-robot task schedules.
Statistical Model Checking (SMC) is applied for system
requirement verification. Our method is aware of uncertainties and
considers robot movement times, interruption times, and
stochastic interruptions that can be learned during multi-robot cell
operations. We developed a model-at-runtime that integrates the
execution of the production cell and optimizes its performance
using a controller-based AI system. For this purpose and to derive
the best policy, we implemented and compared AI-based methods,
namely, Monte Carlo Tree Search, a heuristic AI-planning
technique, and Q-learning, a model-free reinforcement learning
method. Our results show that our methodology can choose
time-efficient task sequences that consequently improve the cycle
time and efficiently adapt to stochastic events, e.g., robot
interruptions. Moreover, our approach scales well compared to
previous investigations using SMC, which did not reveal any
violation of the requirements.

KEYWORDS

Multi-robot Motion Planning; Multi-robot Task Planning; Model
Checking; Safe Reinforcement Learning; Q-Learning

ACM Reference Format:

Eric Wete, Joel Greenyer, Daniel Kudenko, and Wolfsgang Nejdl. 2024.
Multi-Robot Motion and Task Planning in Automotive Production Using
Controller-based Safe Reinforcement Learning. In Proc. of the 23rd
International Conference on Autonomous Agents and Multiagent Systems

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS,
10 pages.

1 INTRODUCTION

Automotive production involves the design, planning, and
commissioning of multi-robot cells that are usually set up on the
assembly line site [4]. The manufacturing process, e.g., spot
welding [34], defines how parts must be added, or assembled, and
moved from one production cell to another for further processing.
In each production cell, the manufacturing process defines
requirements that must be fulfilled to achieve a high-quality end
product. Among others, we distinguish critical, safety, quality, and
performance requirements. Due to the intrinsic complexity of
requirements and manufacturing processes, e.g., spot welding, the
design, and planning of the orchestration of multiple robots in a
production cell is a challenging, usually manual error-prone, and
time-consuming task. For example, robot engineers must ensure
that no collision occurs during the manufacturing process
execution. Moreover, multi-robot cell systems can be subjected to
unexpected events that include, e.g., the manufacturing process
interruptions, mechanical failure on a robot welding gun, and
amendments to the production process. Due to the commissioning
time constraints and production process requirements, this aspect
of uncertainties is usually not well covered in practice. Using a
dynamic task reallocation mechanism, self-adaptive
systems [7, 26] can provide a solution to address uncertainties.

To address the problem of planning and task allocation, recent
approaches [12, 13, 27, 28, 32, 42, 43] provided tools for the formal
specification of system requirements, the build and execution of
correct-by-construction system controllers. However, at the
reactive controller level, these approaches do not address real-time
constraints or probabilistic processes. Moreover, these methods do
not scale well as the size of the system increases, e.g., the number
of robots, the number of robot tasks. Reinforcement learning (RL)
methods, such as Q-Learning [36], can optimize system decisions.
To this end, the RL agent interacts with its environment, receives
rewards according to selected actions, and adapts its behavior to
optimize its accumulated reward. However, in some contexts, such
as multi-robot cells, the RL agent actions must be guarded to
always select requirements-compliant actions, e.g., collision-free
actions. Additionally, the set of RL agent actions varies from a
system state to another.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

In this paper, we address the challenges raised above in the
following contributions.

1. Time- and probabilistic-constrained model. To address
real-time constraints and probabilistic approaches at the controller
level, we specify the system requirements and environment
assumptions using Prism [22], a probabilistic model checker for
formal modeling, and analysis of systems with probabilistic
behavior. The specification considers multi-robot cell components,
such as tasks, robots, collision requirements, and task dependency
constraints. The specification model also includes the movement,
task and interruption times of each robot, and the interruption
probabilities. In fact, the model supports the occurrence of
unexpected events during production cell operation. The
specification model can be produced from the robot cell
description provided by robot programmers. Using model
checking, the specification model is checked against requirements,
such as cycle completion or that a robot must not be interrupted
indefinitely.

2. Integrated model execution: Model-at-runtime.We also
provide an executor engine based on the Prism simulation engine
to execute the Prism model. It permits the computation of all
possible states given a system action, and also all possible system
actions given a state. The executor engine can be integrated with
robot services, such as ABB Robot Web Services, to connect the
executor to a virtual or real production cell. This paper introduces
a controller-based safe reinforcement learning architecture, as
illustrated in Fig. 1. Using Prism, we produce a safe controller,
including a (sub optimal) policy that is optimized using RL-based
methods. In fact, the RL agent learns the optimal policy from valid
actions guaranteed by a controller. Therefore, the correctness of
the system execution is guaranteed since the controller
implements the system requirements that are formally specified
using Prism in the previous stage. Moreover, using Prism reward
structures and reward-based properties, given an environment
observation, each available safe action can be evaluated, and the
evaluations are inputted to the RL agent model. This
complementary information can significantly speed up the
convergence of the learning process, namely, the exploration
phase. The executor engine that includes the controller, observes

Controller

Environment
(Multi-robot cell)

RL agent

Environment state

Policy
update

Safe actions
+ Evaluation

Selected action

Action reward

Figure 1: The controller-based safe reinforcement learning.

The controller synthesizes safe actions from the environment

observation including action evaluations for the RL agent.

the multi-robot cell and outputs a set of possible, safe and
requirements-compliant system actions including their evaluation,
e.g., cycle time, given the environment current state. The RL agent

selects actions to apply on the environment. Then, the
environment new state and the reward related to the applied
action are computed. The new state and reward are used to update
the agent policy. The goal of the RL agent is to optimize its
accumulated reward during its interactions.

3. Results and Evaluation.We experiment and showcase the
performance of our approach by implementing the RL agent using
RL techniques, such as Q-learning, a model-free RL technique, and
compared it with Monte Carlo Tree Search (MCTS), a heuristic
sample-based planning technique. We show that the RL agent can
produce, at run-time, event in robot interruption cases,
time-efficient action sequences to achieve optimal cycle time.
Prism can compute estimations of system properties, by sampling
random system executions using Statistical Model Checking
(SMC) [24]. This approach is useful in complex model checking
cases or for large models and improves our approach scalability.

2 BACKGROUND

2.1 Multi-Robot Task Planning

A robot task is defined as an activity that a robot can perform
during a certain time. We define a task as re-allocable when at least
two robots can execute the task. The task plan of a robot describes
which tasks must be achieved by the robot and the order in which
those tasks must be executed.

The task planning defines the task plan for each robot of the
production cell. We define multi-robot task planning as the robot
task planning for a multi-robot cell.

2.2 Multi-Robot Motion Planning

The robot’s motion is defined by the combination of a path and a
trajectory. A robot path defines the geometric representation of a
robot movement, i.e., the sequence of waypoints that the robot must
pass through during its motion. A robot trajectory defines a time-
constrained path, i.e., it defines, giving a path, the time constraints,
such as velocity, accelerations, and jerks on waypoints, including
the start and end path points.

The motion planning finds the collision-free path and trajectory
of a robot to move from an initial to a final robot configuration. In
the multi-robot context, we rather speak about multi-robot motion
planning.

2.3 Discrete-Time Markov Chain (DTMC)

A discrete-time Markov chain (DTMC) is defined by a tuple 𝑀 =

(𝑆, 𝑠𝑖𝑛𝑖𝑡 , 𝑃, 𝐿), where:
• 𝑆 ≠ ∅, is a finite set of states
• 𝑠𝑖𝑛𝑖𝑡 ∈ 𝑆 is the initial state
• 𝑃 : 𝑆×𝑆 → [0, 1] represents the transition probability matrix
with the constraint

∑
𝑠′∈𝑆 𝑃 (𝑠, 𝑠′) = 1,∀𝑠 ∈ 𝑆

• 𝐿 : 𝑆 → 2𝐴𝑃 , state labeling function with atomic
propositions, where AP is the set of atomic propositions.

An infinite or finite state sequence of a DTMC is called a path,
defined by 𝜌 = 𝑠0𝑠1𝑠2 . . ., where 𝑠𝑖 ∈ 𝑆 , and ∀𝑖 : 𝑃 (𝑠𝑖 , 𝑠𝑖+1) > 0.

A state 𝑞 ∈ 𝑆 is reachable from the state 𝑝 ∈ 𝑆 if a path can be
found from 𝑝 to 𝑞, i.e., ∃ 𝜌 : 𝜌 = 𝑝 . . . 𝑞. A state is reachable if it is
reachable from the initial state.

The research works in [15] introduced the Probabilistic
Computation Tree Logic (PCTL), an extension of the CTL [5, 6]
that defines temporal logic with time constraints. In the PCTL, the
temporal logic is specified as in CTL and the PCTL adds
probabilities to describe DTMC properties. The PCTL abstract
syntax is defined by:

𝜑 ::= ⊤ | 𝑞 | ¬ 𝜑 | 𝜑 ∧ 𝜑 | 𝑃∗𝑝 [𝜑 𝑈 𝜑], where 𝑞 is an atomic
proposition, 𝑝 is a probability, 𝑝 ∈ [0, 1], and ∗ ∈ {<, >, ≤, ≥}. 𝑈
is the temporal modal operator “until". 𝑃 expresses the probability
bound of the specified formula, i.e., the truthiness of the formula
with the probability ∗𝑝 .

Given a DTMC model and a PCTL formula that expresses a
property, the PCTL model checking checks if the model satisfies the
formula [15]. For example, the production cell must reach the end of
a cycle. Thus, the designed model must verify that the end of a cycle
can be reached with respect to environment assumptions. In our
problem settings, to verify that the robot cell cycle can complete,
the underlying DTMC model of the robot cell must be checked
against the reachability of the cycle end state. Indeed, we can use
the LTL F (eventually) operator: F 𝜑 ≡ true U 𝜑 .

2.4 Q-learning

In RL [19], Q-learning is known as a model-free method [40], i.e., it
does not require the environment (transition) model. The RL agent
learns a behavior or a policy by interacting with its environment
to reach its goal.

Given a state 𝑠 , inferred from the agent environment observation,
the agent selects an action 𝑎, among possible actions in that state,
observes the environment to retrieve a new environment state, and
receives a reward that is used to update its Q-table. The intuition
behind this is that by making several iterations in the future and
trying the possible actions, the Q-table will converge to the optimal
policy.

Given 𝑆 , the set of states, and 𝐴, the set of actions, the Q-values
are updated using temporal difference learning [40] inspired by the
following Bellman equation [2]:

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼
[
𝑟 + 𝛾 · max

𝑎′∈𝐴
𝑄 (𝑠′, 𝑎′) −𝑄 (𝑠, 𝑎)

]
(1)

Where:
• 𝑄 (𝑠, 𝑎) is the Q-value of action 𝑎 ∈ 𝐴 selected by the RL
agent among the possible actions of the state 𝑠 ∈ 𝑆
• 𝑟 is the reward earned by the RL agent
• 𝛼 ∈ [0, 1] represents the learning rate
• 𝛾 is the discount factor
• 𝑠′ represents the state obtained applying action 𝑎 to the
environment.

The Q-learning method updates the optimal policy using Eq. (1)
while iterating over episodes.

During the system operation, the most promising action is
selected using the action with the highest Q-value given the
system current state.

3 RELATEDWORK

Planning safe robot motion can be achieved using linear temporal
logic (LTL) synthesis-based approaches, and the model can control

robots during their motion [16, 20, 42, 43]. These works described
how to specify, using LTL or its subset GR(1) [3, 32], the system
behavior as guarantees and the environment behavior as
assumptions. These approaches support the generation of robot
motion and robot task orchestration. These approaches can be
extended by taking into account probabilistic and real-time
constraints and can be improved using learning techniques as we
do in our approach. Moreover, these approaches require
improvements in scalability due to the LTL state space blow up.
Using SMC, our approach addresses this problem that occurs
mainly during the system verification process.

Some approaches [17, 30, 31, 37] used the behavior trees (BTs)
framework as a middle layer to integrate LTL synthesis with robot
motion and task planning to find maximal satisfying task
schedules. In fact, the BT models sets of tasks, where each that is
defined is a sub-tree. The goal is to provide independent modular
task formal representations. Thus, BT sub-trees can be replaced or
moved according to defined requirements. In contrast to our
approach that constructs a model-at-runtime, the BT-based
approaches do not yet cover run time constraints due to the offline
construction of the BT model.

To address the task allocation and planning under uncertainties,
Markov decision process (MDP)-based models model the robot
behavior and LTL for constraint specification [11, 23, 35]. These
approaches design a team of MDPs that are solved for LTL
constraints using Prism. However, the joint policy built using the
MDPs does not consider task dependencies and robot motion time
constraints to improve the cycle time. In contrast, our approach
build a Prism model that specifies tasks dependency constraints
(using guards) for valid action selection.

The integration of model checking with motion planning shows
that a solution for the task specification is proposed to address the
challenge of motion and action planning given LTL constraints [14].
In fact, the approach leverages the domain-specific knowledge and
the domain-independent knowledge. The former defines the robot
motion alongwith the workspacemodel, and the latter describes the
system actions, representing the robot capabilities. This increases
the loose coupling, scalability, and flexibility of the framework. We
take advantage of this architecture model to improve the scalability
of our approach. Instead of synthesizing the controller, which raises
scalability issues for large models, as in our use case, we verify
the system via SMC. During the system operation, we execute
the defined model that follows the model strategy. Moreover, we
improve the synthesized strategy using RL-based approaches.

RL is often used to solve decision-making problems, e.g., to avoid
the system making unrecoverable errors, but even with low rates,
such unrecoverable errors can appear because the agent can select
unsafe actions [29]. To address this problem, some approaches
proposed shield synthesis for safe RL [18, 21] to restrict agent
action space while optimizing agent performance. The shield can
correct the agent-selected action if it is unsafe [1, 9] or it first filters
out the unsafe actions, and the agent selects among the filtered
actions. The latter is known as the preemptive shield. The shield
is built using reactive synthesis from an LTL-based specification
and an abstraction of the environment model specified using MDP.
Our methodology uses a preemptive strategy. Our Prism model is
specified to avoid such unrecoverable actions to be selected during

the system execution or agent learning. The unrecoverable actions
are identified during the design phase and checked against the
Prism model using the Prism property specification.

4 PROBLEM DESCRIPTION

We consider a multi-robot cell that consists of robots, robot tools,
peripheral devices, workpieces, and objects such as part
positioners. We assume that the work cell is heterogeneous, i.e.,
the robot capabilities can differ from one robot to another, e.g., set
of spot welding, with pick-and-place robots. Each robot can move
in the work cell and achieve a set of tasks. Each robot has a motion
range and can share a workspace with other robots. Thus, there
are some task sets that a robot set can execute.

4.1 System Design

The system design requires the identification of relevant work cell
components and component properties. We identify the system-
and environment-related transitions. In fact, the robot current
location, the robot status (e.g., interrupted or not), the status of
tasks (completed or not), and the robot remaining time estimation
(when the robot will be available for a new task assignment) define
the environment variables. The robot task assignments define the
system variables, i.e., a system variable defines for a robot the task,
which is assigned to the robot. We define a multi-robot state as a
full assignment of environment and system variables. We define a
system action as a joint assignment of task to robots, i.e., an action
describes a full assignment of the robots with tasks. The
assignment of a task to a robot will trigger the corresponding
robot movement and task execution. For example, a welding task
assignment will make the robot to move to the welding point and
perform the welding process. This task assignment description is
similarly defined for glue, paint, pick and place tasks.

To understand these definitions, let us consider a multi-robot cell
with two robots 𝑟1 and 𝑟2 with their the home locations ℎ1 and ℎ2,
respectively. The tasks that robot 𝑟1 (resp. 𝑟2) can execute are 𝑡1, 𝑡2
and 𝑡3 (resp. 𝑡2, 𝑡3 and 𝑡4). We consider the movement of a robot to
its home location as a task that we define as 𝑡ℎ1 (resp. 𝑡ℎ2) for robot
𝑟1 (resp. 𝑟2). Tab. 1 defines the variables of this multi-robot cell
example. Each defined variable has a type (environment or system),
a description, and a domain. A variable domain defines the values
that this variable can take. According to this example, a system or
an RL agent action is defined as the tuple (𝑡𝑖 , 𝑡 𝑗) that assigns the
task 𝑡𝑖 ∈ {𝑡ℎ1, 𝑡1, 𝑡2, 𝑡3} to robot 𝑟1 and the task 𝑡 𝑗 ∈ {𝑡ℎ2, 𝑡2, 𝑡3, 𝑡4}
to robot 𝑟2.

4.2 System Rules

The production cell system to be built must manage the
orchestration of multiple robots, i.e., parallel movements, under
the consideration of the work cell requirements described in the
following rules.

• Each robot has a restricted workspace, thus having a set of
tasks that it can perform.
• A task assignment can be reallocated if the robot is
interrupted.
• A task must not be assigned to many robots at the same.

Table 1: Variable definition of a multi robot cell example

Variable type Description Domain

Environment Robot 𝑟1 current location 𝑡ℎ1, 𝑡1, 𝑡2, 𝑡3
Environment Robot 𝑟2 current location 𝑡ℎ2, 𝑡2, 𝑡3, 𝑡4
Environment Robot 𝑟1 remaining time Time in ms
Environment Robot 𝑟2 remaining time Time in ms
Environment Robot 𝑟1 status Boolean
Environment Robot 𝑟2 status Boolean
Environment Task 𝑡ℎ1 status Boolean
Environment Task 𝑡ℎ2 status Boolean
Environment Task 𝑡1 status Boolean
Environment Task 𝑡2 status Boolean
Environment Task 𝑡3 status Boolean
Environment Task 𝑡4 status Boolean
System Robot 𝑟1 task assignment 𝑡ℎ1, 𝑡1, 𝑡2, 𝑡3
System Robot 𝑟2 task assignment 𝑡ℎ2, 𝑡2, 𝑡3, 𝑡4

• An interrupted robot must go to its home location (e.g., for
repair).
• A robot returns to its home location when its tasks are
completed.
• A task must not be assigned to a robot if all its task
dependencies are not cleared.
• Any task assignment representing a potential collision must
be avoided.
• Incomplete tasks must be assigned so that completed tasks
are not assigned infinitely to the robots.

4.3 Environment Assumptions

The system engineer must define how the environment behaves,
more precisely, how the environment variables change during
production cell operation. We define the environment behavior in
assumptions as follows:
• When a cycle starts, all robots are ready to achieve tasks, are
not interrupted, are at their home position, and no tasks are
completed yet.
• At the end of a cycle, a new cycle starts.
• A robot first moves to the location where the task must be
completed and then executes it.
• A robot task cannot be unassigned if it is not completed
except if the robot is interrupted, i.e., if a robot is at a task
location or gets a new task and the task is not yet completed
it performs the task.
• A robot eventually completes its assigned task unless
interrupted.
• A robot can be interrupted at any time (robot failure and
repair).
• If a robot is interrupted, it must not complete a task.
• A robot is repaired only at its home position, i.e., if a robot is
interrupted, its status can only change at the home position..

5 METHODOLOGY

Our approach combines formal system specification and RL
techniques. The former permits the formal modeling, analysis and

verification of the system requirements, along with the
computation of a controller based on the Prism [22] simulation
engine. The later allows us to improve the system actions while
interacting with its environment according to optimization
criteria.

As shown in Fig. 2, we describe in three levels our approach
architecture. The first level, i.e., the informal level, consists of the
environment assumptions, e.g., a robot can be interrupted with
some probability, and system requirements, e.g., a robot can only
execute a set of task due to its working range. The second level,
i.e., formal level (Prism), consists of a Prism model that formally
specifies the environment assumptions, the system requirements,
and the reward structures, which are required for optimizations at
run time. The third level or run time level (Java) is made up of the
Prism simulator engine, a controller that uses Prism APIs and the
simulator engine to provide the next possible and
requirement-compliant system actions, and a controller executor.
The controller executor implements the strategy or agent policy to
optimize the making-decision system, i.e., finding the most
efficient task schedules giving the unexpected environment
behavior. In the following sub-sections we take a closer look at the
three levels.

Informal
level

Environment
assumptions

System
requirements

Environment
modules

System
modules

Reward structures

Controller

Simulator engine

Formal
level (Prism)

Runtime
level (Java)

Controller executor

Figure 2: The methodology architecture in three levels

5.1 System Specification

The environment as well as the system can be modeled as a DTMC,
where environment and system transitions are performed one after
the other. Environment transitions update only the environment
variables, whereas system transitions update only the system
variables. Our approach requires the system description and its
requirements. As illustrated in Fig. 3, our process is threefold.

First, the prerequisites (i.e., the informal level in Fig. 2) are made
up of system requirements, robot cell constraints, and collision
constraints. A robot cell constraint can define for example
dependencies between robot tasks, i.e., task prerequisites, or tasks
that can only be performed when some tasks are already
completed. Due to working range constraints and requirements, a
robot can only execute a set of tasks. We leverage analysis
techniques for robot reachability and capacity to identify tasks
that each robot can execute [33, 38]. Collision constraints define

robot movements that must not occur during the robot cell
operation. Robot programmers can provide these prerequisites in a
robot development environment tool or a formal robot cell
specification [42]. Given the set of tasks a robot can perform, we
leverage trajectory planning techniques such as A-Star [8, 10, 25]
to compute all trajectories for each task. Synchronously, we run all
trajectory pairs to find all potential collisions. We mention that the
trajectories in the pair are from two different robots. Moreover,

System & property
specification

3D Roboterzelle3D RoboterzelleMC results

3D Roboterzelle3D Roboterzelle
(In)formal requirements
Robot cell constraints
Collision constraints

Yes

No

Controller
generation

3D Roboterzelle3D RoboterzelleController strategy

MC OK?

Model analysis
Model checking (MC)

3D Roboterzelle3D RoboterzellePRISM system model

Legend

Model /
Document

Activity Workflow Process startCondition Process endModel flow

3D Roboterzelle3D Roboterzelle
Robot movement times

Robot task times
Stochastic interruption model

3D Roboterzelle3D RoboterzellePRISM property
specification model

Figure 3: The system specification process. The figure shows

how we build the controller based on Prismmodels, MC of

LTL properties to synthesize safe actions for RL agents.

this step requires time constraints on movements, interruptions,
and interruption probabilities. Based on the inputs above, we write
the Prism system model (see the formal level in Fig. 2) that defines
the system and the environment behavior, including the stochastic
environment events. The environment behavior also known as
environment assumptions (resp. system behavior or system
requirements) are specified using Prism modules that only control
environment (resp. system) variables and are called environment
(resp. system) modules. We also defined the reward structures for
system action evaluation at run time. This step also outputs the
Prism property specification model that defines, using probabilistic
temporal logic, the properties that the system must verify.

Second, we perform model analysis and model checking using
the Prism tool. In fact, the Prism system model is checked w.r.t.
the system requirements encoded in the Prism property
specification model. If model checking fails, the Prism system
model is refined accordingly to fulfill the system requirements. To
this end, Prism can generate, in some cases, a counterexample that
shows a sequence of states leading to a property violation. This
verification process permits at run time to avoid unsafe action
selections, e.g., an action that assigns two tasks to two robots,
which cause a collision between the two robots.

Finally, we integrate the Prism system model with a controller
that can be executed while the system is running (see the run time
level in Fig. 2). The controller executor runs the Prism system
and computes safe and requirements-compliant system actions

given the state of the environment. To this end, we use the Prism
simulator engine that uses Java-based APIs to run the Prism model.
Moreover, using the reward structures, the Prism simulator permits
computing, given a state, quantitative property estimations such as
cycle time for each possible system action. The controller strategy
refers to the controller implementation of the underlying Prism
model.

5.2 Prism Model Specification

The Prism model consists of constant definition, environment and
system modules. The constants define relevant multi-robot cell
configurations: the number of robots and tasks, robot bases,
interruption probability constraints, and time constraints for robot
movements, tasks and interruptions. The environment modules
specify environment transitions by defining rules to update
environment variables. In contrast, the system modules define
system transitions that update system variables. For each variable,
we define a Prism module and declare a the variable in the module.
Using the Prism synchronization feature, the environment and
system modules are activated in a turn-based fashion during the
Prism model execution.

Each environment (resp. system) module defines a local variable
that represents an environment (resp. a system) variable. At a given
time, the variable values of all modules represent a state of the
multi-robot cell. Each module behavior is specified by commands
that define how the variables change. A Prism command is defined
in Eq. (2) as follows.

[L] C→ prob1 : up1 + · · · + prob𝑛 : up𝑛 ; (2)

where L is the command annotation label that permits the
synchronization of commands having the same label; C is the
condition over the model variables. It activates the command
transitions that follow the right part of the right arrow (→).
Transitions are separated by the plus (+) operator. For
𝑖 ∈ {1, . . . , 𝑛}, prob𝑖 defines the transition probability and up𝑛 the
update expression that specifies new variable values of the module.

Lst. 1 shows some module command examples. Each command
has a label, a guard condition for the command transitions. The
first line updates the current location of robot R00 (cl00) when its
movement to its target (tl00) is completed. At line 2, the second
command updates the interruption status (ii00) using the
interruption probability constant (INT_PROB). The next line
specifies the task completion of the assigned task 0 (iv000). The
last command assigns the task 0 to the robot R00 (tl00).

The Prism model is verified using model checking with Prism
property specification. For example, to check that the production
cell completes its cycle infinitely often, we specified the following
property and checked against the Prism model:
P≥1 [G F cycleCompleted]. Moreover, we verified that once a
cycle is completed a new cycle start using the property
P≥1 [G F (noTaskCompleted U cycleCompleted)]. The
following non-exhaustive properties contribute to avoid collisions:
P≥1 [!(F tl00 = tl01)] prevents a task to be assigned to two
robots, and P≥1 [!(F cl00 = cl01)] prevents two robots to be on a
same position. An important property must also check that no
robot interrupts indefinitely P≥1 [GF !ii00]. This property must
be verified for all robots.

5.3 System Performance Optimization with RL

We construct a learner that takes as input: the multi-robot cell
state and the available safe actions according to the environment
observation, including the action evaluations obtained by the
controller (see Fig. 1). The multi-robot cell state consists of the
value of the environment and system variables. The controller
defines the set of available safe actions given the multi-robot cell
current state. The computation of actions including their
evaluation, e.g., estimated cycle time, must be performed since the
action set can differ from an environment observation to another.
The goal of the RL agent is to learn the optimal policy by iterating
over episodes and updating its policy (Q-table for classic
Q-learning method using the temporal difference learning, as
defined in Eq. (1)). The RL agent selects the most promising action
with respect to its policy given the current environment state.

In tabular Q-learning, a multi-robot cell state (i.e., robot tasks,
robot status, and task status) is encoded in a Q-table, along with
the safe system actions provided by the controller given the
environment state. To illustrate the Q-table encoding, let us
consider a multi-robot cell of 𝑁 robots with 𝑇 tasks. We define the
set of robots R = {1, . . . , 𝑁 }, and the set of tasks
T = {1, ...,𝑇 ,𝑇 + 1, ...,𝑇 + 𝑁 }, where 𝑇 + 𝑖 is the task for the home
position of the robot 𝑖 ∈ R, which defines the movement of robot 𝑖
to its home position. For each robot 𝑟 ∈ R, we define: 𝐶𝐿𝑟 as the
current location, 𝑅𝑇𝑟 as the remaining time, 𝑅𝑆𝑟 as the robot
status, 𝑇𝑇𝑟 as the assigned task of the robot 𝑟 . We apply
unity-based normalization to normalize time values into the range
[0, 5], as shown in Eq. (3).

𝑋 =

⌊
5 · (𝑥 − 𝑥𝑚𝑖𝑛)
(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

⌋
(3)

For each task 𝑡 ∈ T , we define 𝑇𝑆𝑡 as the task status of the task 𝑡 .
A state is defined by (𝐶𝐿𝑟 , 𝑅𝑇𝑟 , 𝑅𝑆𝑟 ,𝑇𝑇𝑟 ,𝑇𝑆𝑡) ∀𝑟 ∈ R, 𝑡 ∈ T , where
𝑇𝑇𝑟 defines the current task assignment. An action is defined by
(𝑇𝑇𝑟) ∀𝑟 ∈ R, which is the next task assignment. Let S be the set
of states and A be the set of actions. Then, the Q-table builds a
matrix and defines the function 𝑄 : S × A → R. The Q-values are
updated using the Bellman equation Eq. (1).

Thanks to the controller, learner exploration can be improved
using action estimations. Therefore, the available actions can be
sorted along with action estimations. The initialization of the RL
agent is performed using the action evaluation provided by the
controller, e.g., Q-values initialization: action estimation value for
all nonterminal states or 0 for the terminal state. The terminal state
corresponds to the end of cycle. Each training episode runs until the
cycle ends. We implemented the learner exploration applying the 𝜖-
greedy strategy for action selection at each training step. Once the
selected action is applied to the environment, the RL agent receives
an immediate reward defined as 𝑟 (𝑠𝑖 , 𝑡𝑖) that refers to the immediate
reward after reaching state 𝑠𝑖 and time 𝑡𝑖 . As illustrated in Eq. (4), it
sets the negative time elapsed as the reward on non-terminal state
and 0 otherwise.

𝑟 (𝑠𝑖 , 𝑡𝑖) =
{−(𝑡𝑖 − 𝑡𝑖−1), if 𝑠𝑖 is not terminal
0, otherwise (4)

To find the best learner hyper-parameter settings, we ran
experiments with different hyper-parameter values, and compared

Listing 1: Sample of Prism model module commands

1 [envRTPos] isEnvRTPosUp & !nextRMTNotDone00 & !atTarget00 -> (cl00 '=tl00);

2 [envInt] isEnvIntUp & notInterrupted00 & isNewAssign00 -> INT_PROB : (ii00 '=true) + (1-INT_PROB) : (ii00 '=false);
3 [envTask] isEnvTaskUp & notVisitedAndAssignedToNotInterrupted000 -> (iv000 '=true);
4 [sys00] !isEnv & !sysPlayed00 & tl00 !=0 & atTarget00 & !ii00 & !allCanDoTasksCompleted00 & isHomeVisited00 &

isCurLocVisited00 & mustBeCompleted000 & !iv000 & potentialCollisionR00L000 -> (tl00 '=0) & (isNewAssign00 '=(tl00

!=0));

the learner performance. The RL agent learns an optimal action
value in a given state or an action value function that models the
optimal expected long-term value or reward for an action in a
given state. The optimal action selection policy is based on the
Q-function and selects the action having the highest Q-value.

We integrated the Prism model execution with an RL agent
to optimize the model execution policy and compared the cycle
times obtained with state-of-the-art methods, namely, random and
MCTS. The former used random system action selection, while the
latter applied MCTS simulations for the system action selection.
We used the random policy execution as our baseline. The baseline
results are used for the model initialization of the RL agent, which
permits the speed-up of the agent policy convergence. Moreover,
the model is enriched with the cycle time estimations of possible
actions provided by the controller at run time. We use the following
settings for the RL agent: 𝜖 = max(0.02, 𝑒−0.01 𝑡) for the 𝜖-greedy
strategy, learning rate 𝛼 = 0.1, and the discount factor 𝛾 = 1. This
value of the discount faction significantly considers RL agent future
rewards. The action reward corresponds to the negative value of
the elapsed time when applying the agent-chosen action.

We leverage Prism to produce a controller that runs using an
underlying Prism model to produce safe actions for the RL agent.
Q-learning is used to further optimize this controller. More
interestingly, in Q-learning, the controller restricts or defines the
action space of the RL agent keeping the optimized controller safe
(see Fig. 1).

6 USE CASE

The motivation for our approach is inspired by an industrial case
study of a multi-robot spot welding production cell. Let us consider
the multi-robot cell of a car underbody, as illustrated in Fig. 4.
The production cell consists of four spot welding robots and a
workpiece (car underbody) placed on a part positioner. The robot
cell consists of four robots: R00, R01, R02, R03, and twelve spot
welding tasks on a car underbody: 0, 1, . . . , 11. A robot has a base
(home) position: the locations 12, 13, 14, 15 are bases for the robots
R00, R01, R02, R03 respectively, and the task feasibility of robot
are depicted in Tab. 2. In Fig. 4, we also highlighted the tasks that
each robot can perform due to the robot reachability range and
capability [33, 38]. Environment variables such as robot location,
robot status, and task status are updated via robot signals and spot
welding case sensors whose data is collected via specific function
calls. Simultaneous simulations of all trajectory pairs can identify
all potential collisions, e.g., if robot R00 must perform task 11, while
robot R02 must perform task 0. The process quality requirements
also define task dependencies, e.g., task 1 depends on tasks 2, and
7. These requirements and constraints are specified in the Prism
model.

0

1
2

3

4

5

6

7

8

9

10

11

12

13

15

14

R00: 0, 1, 2, 3, 4, 9, 10, 11
Base: 12

R01: 2, 3, 4, 5, 6, 7, 8
Base: 13

R03: 3, 4, 5, 6, 7, 8, 9, 10
Base: 15

R02: 0, 1, 2, 8, 9, 10, 11
Base: 14

Figure 4: A multi-robot spot welding cell of a car underbody.

The figure shows four robots at their base location and the

spot welding points that each robot can process.

Table 2: The task feasibility of each robot. This figure shows

the spot welding task distribution by robot.

Robot Tasks

R00 0, 1, 2, 3, 4, 9, 10, 11
R01 2, 3, 4, 5, 6, 7, 8
R02 0, 1, 2, 8, 9, 10, 11
R03 3, 4, 5, 6, 7, 8, 9, 10

7 RESULTS AND DISCUSSION

In our experiments, we used a PC, with an Intel (R) Core (TM)
i5-8250U CPU, RAM 16.0 GB, on a x64-based processor, running
Windows 11.

To verify that the system reaches the end of the cycle, and apply
SMC, we specify the following property:
P≥0.98 [F cycleCompleted].

The Prism P operator is true in a state 𝑠 where the specified
bound probability (here ≥ 0.98) is met for paths starting from the
state 𝑠 , which satisfy the specified property (here F

cycleCompleted). This property specifies the reachability of the
cycle end using the LTL operator F (eventually). The Boolean
expression cycleCompleted specifies that the cycle of the robot

Table 3: SMC results using SPRT

Path length

Robots Tasks Avg.

iteration

time (s)

Avg. Min. Max.

2 8 0.009 6.6 × 102 74 2554
2 12 0.016 8.4 × 102 99 4778
2 20 0.031 1.1 × 103 144 3254
2 30 0.100 1.1 × 103 229 3398
2 40 0.270 1.2 × 103 339 5544
3 12 0.019 8.3 × 102 149 2068
3 30 0.130 1.0 × 103 245 2255
3 40 0.340 1.0 × 103 371 3233
4 12 0.037 1.1 × 103 202 3323
4 30 0.190 1.2 × 103 335 2630
4 40 0.340 1.3 × 103 461 4030
5 30 0.220 1.4 × 103 343 2342
5 50 0.740 1.6 × 103 767 2790
6 30 0.240 1.6 × 103 701 2932
6 40 0.490 1.7 × 103 872 3301
7 50 1.000 2.0 × 103 928 3238
7 60 1.800 2.2 × 103 989 3168
8 40 0.690 2.1 × 103 692 3452
9 50 1.400 2.5 × 103 1306 3898
10 40 0.890 2.6 × 103 844 4080

cell is complete, i.e., all tasks are completed, all robots are at their
base and no robot is interrupted.

Using the Sequential Probability Ratio Test (SPRT) method [39],
we verified the Prism model of the use case (see [41]) and obtained
a positive result with the probability of 0.99, with 113 iterations
performed in 4.165 s. The average, minimum, and maximum path
lengths computed are 1.1×103, 202, and 3323, respectively, with the
maximal path length set to 10 000. For scalability testing purposes,
we varied the robot cell settings. The results of our experiments
are shown in Tab. 3. For all the experiments, the SPRT method
computed 113 iterations and obtained a positive result with the
probability of 0.99. Tab. 3 shows that the time required for the SMC
and path length increase with the number of robots and tasks. This
can be explained by the increase in the state space size. For example,
the system has at most 𝑟 × 𝑡 possible actions, where 𝑟 is the number
of robots and 𝑡 the number of tasks. Our approach can at least
support up to 10 robots and 40 tasks. Considering the scalability,
these results are satisfying for the industry current needs and our
use case.

In our experiments, we performed 2000 cycles, corresponding to
the number of proceeded car underbodies. We performed
experiments with and without probabilistic interruptions using
Prism guards. We should mention that all the compared methods
rely on the Prism model. Thus, the policy strategies are safe with
respect to safety requirements such as collision freedom and task
dependency constraints, but they differ in the action selection
strategy used. We did not find any violation of the safety
requirements. Illustrated in Tab. 4, the results of our experiment

Table 4: Cycle times achieved with 2000 cycles

Cycle time (s)

Method Int. Overall

(×103)
Avg. Imp.

(%)

Min. Max.

Random
0

38.09 19.04 11.63 29.94
MCTS 37.75 18.87 0.9 12.49 26.70
QL 37.60 18.80 1.3 11.59 25.89
Random

0.0125
58.59 29.29 11.34 88.49

MCTS 57.17 28.58 2.4 11.14 90.87
QL 56.52 28.26 3.5 11.91 92.49

show that the RL agent provided the best performance compared
to random and MCTS-based policies. The RL agent can therefore
optimally schedule task sequences under the consideration of
stochastic interruptions. The RL agent can find the most-efficient
task sequences, even in interruption cases and outperform random
and MCTS policies.

8 CONCLUSION

In this paper, we addressed the problem of efficient multi-robot
motion and task planning under the consideration of uncertainties,
tasks and real-time motion constraints using safe RL where the
controller guarantees the safety of the agent action selection. We
described the controller-constrained RL architecture, which extends
the traditional RL approach with a controller that guarantees the
correctness or validity of the agent actions. We also described how
we address the problem using the three level architecture from the
informal level that describes the environment assumptions, along
with the system requirements and constraints, to the runtime level
that specifies our model-at-runtime based on the second level that
formalizes and design the environment and system behaviors.

Using Prism, we specified the environment and the system
behaviors, including stochastic and real-time constraints. The
designed Prism model defines also reward structures to evaluate,
at run time, agent actions, and therefore considers quality
requirements for the online optimization of the system agent
performance. Using LTL formulae, we specified a property
specification model to verify the Prism model against the system
requirements. In fact, to validate the correctness of the system
specification, the system verification is performed using LTL-based
model checking approaches, such as SMC, which is appropriate for
large models or when traditional model-checking methods do not
scale well. The system execution is monitored, controlled using a
model-at-runtime, and optimized at run time through RL learning.
We applied our approach and experimented with an industrial use
case, and showed that the RL agent performs with the best results
over state-of-the-art methods.

Further research could involve experimentation on real
multi-robot cells, and on-the-fly model constraint changes, since
the model can become obsolete due to online requirement and
constraint adjustments. In the future, it could be interesting to
investigate how to improve the scalability of model-checking by
using for example learning approaches.

REFERENCES

[1] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding.
Proceedings of the AAAI Conference on Artificial Intelligence 32, 1 (Apr. 2018).
https://ojs.aaai.org/index.php/AAAI/article/view/11797

[2] EN Barron and H Ishii. 1989. The Bellman equation for minimizing the maximum
cost. Nonlinear Analysis: Theory, Methods & Applications 13, 9 (1989), 1067–1090.

[3] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
2012. Synthesis of Reactive(1) designs. J. Comput. System Sci. 78, 3 (2012), 911
– 938. https://doi.org/10.1016/j.jcss.2011.08.007 In Commemoration of Amir
Pnueli.

[4] Nils Boysen, Malte Fliedner, and Armin Scholl. 2008. Assembly line balancing:
Which model to use when? International Journal of Production Economics 111,
2 (2008), 509–528. https://doi.org/10.1016/j.ijpe.2007.02.026 Special Section on
Sustainable Supply Chain.

[5] Edmund M. Clarke and E. Allen Emerson. 1982. Design and synthesis of
synchronization skeletons using branching time temporal logic. In Logics of
Programs, Dexter Kozen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
52–71.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications. ACMTrans.
Program. Lang. Syst. 8, 2 (apr 1986), 244–263. https://doi.org/10.1145/5397.5399

[7] R. de Lemos and P. Potena. 2017. Chapter 14 - Identifying and Handling
Uncertainties in the Feedback Control Loop. InManaging Trade-Offs in Adaptable
Software Architectures, Ivan Mistrik, Nour Ali, Rick Kazman, John Grundy, and
Bradley Schmerl (Eds.). Morgan Kaufmann, Boston, 353–367. https://doi.org/10.
1016/B978-0-12-802855-1.00014-9

[8] František Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin Florek,
Tomáš Fico, and Ladislav Jurišica. 2014. Path Planning with Modified a Star
Algorithm for a Mobile Robot. Procedia Engineering 96 (2014), 59–69. https:
//doi.org/10.1016/j.proeng.2014.12.098 Modelling of Mechanical and Mechatronic
Systems.

[9] Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk
Topcu, and Lu Feng. 2021. Safe Multi-Agent Reinforcement Learning via Shielding.
International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 483–491.

[10] Shang Erke, Dai Bin, Nie Yiming, Zhu Qi, Xiao Liang, and Zhao Dawei.
2020. An improved A-Star based path planning algorithm for autonomous
land vehicles. International Journal of Advanced Robotic Systems 17,
5 (2020), 1729881420962263. https://doi.org/10.1177/1729881420962263
arXiv:https://doi.org/10.1177/1729881420962263

[11] Fatma Faruq, David Parker, Bruno Laccrda, and Nick Hawes. 2018. Simultaneous
Task Allocation and Planning Under Uncertainty. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 3559–3564. https://doi.org/
10.1109/IROS.2018.8594404

[12] Joel Greenyer, Larissa Chazette, Daniel Gritzner, and Eric Wete. 2018. A Scenario-
BasedMDE Process for Dynamic Topology Collaborative Reactive Systems - Early
Virtual Prototyping of Car-to-X System Specifications. In Joint Proceedings of the
Workshops at Modellierung 2018 co-located with Modellierung 2018, Braunschweig,
Germany, February 21, 2018. 111–120. http://ceur-ws.org/Vol-2060/mekes8.pdf

[13] Joel Greenyer, Daniel Gritzner, Timo Gutjahr, Florian König, Nils Glade, Assaf
Marron, and Guy Katz. 2017. ScenarioTools – A tool suite for the scenario-based
modeling and analysis of reactive systems. Science of Computer Programming
149 (2017), 15 – 27. https://doi.org/10.1016/j.scico.2017.07.004 Special Issue on
MODELS’16.

[14] Meng Guo, Karl H. Johansson, and Dimos V. Dimarogonas. 2013. Motion and
action planning under LTL specifications using navigation functions and action
description language. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 240–245. https://doi.org/10.1109/IROS.2013.6696359

[15] Hans Hansson and Bengt Jonsson. 1994. A logic for reasoning about time and
reliability. Formal Aspects of Computing 6, 5 (01 Sep 1994), 512–535. https:
//doi.org/10.1007/BF01211866

[16] Keliang He, Morteza Lahijanian, Lydia E. Kavraki, and Moshe Y. Vardi. 2017.
Reactive synthesis for finite tasks under resource constraints. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 5326–5332.
https://doi.org/10.1109/IROS.2017.8206426

[17] Georg Heppnerl, Nils Berg, David Oberacker, Niklas Spielbauer, Arne Roennau,
and Rüdiger Dillmann. 2023. Distributed Behavior Trees for Heterogeneous
Robot Teams. In 2023 IEEE 19th International Conference on Automation Science
and Engineering (CASE). 1–8. https://doi.org/10.1109/CASE56687.2023.10260300

[18] Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick
Bloem. 2020. Safe Reinforcement Learning Using Probabilistic Shields (Invited
Paper). In 31st International Conference on Concurrency Theory (CONCUR 2020)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 171), Igor Konnov and
Laura Kovács (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 3:1–3:16. https://doi.org/10.4230/LIPIcs.CONCUR.2020.3

[19] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996.
Reinforcement learning: A survey. Journal of artificial intelligence research 4

(1996), 237–285.
[20] Mizuho Katayama, Shumpei Tokuda, Masaki Yamakita, and Hiroyuki Oyama.

2020. Fast LTL-Based Flexible Planning for Dual-Arm Manipulation. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 6605–
6612. https://doi.org/10.1109/IROS45743.2020.9341352

[21] Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem, Laura Humphrey,
Robert Könighofer, Ufuk Topcu, and Chao Wang. 2017. Shield synthesis. Formal
Methods in System Design 51, 2 (01 Nov 2017), 332–361. https://doi.org/10.1007/
s10703-017-0276-9

[22] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification
of Probabilistic Real-time Systems. In Proc. 23rd International Conference on
Computer Aided Verification (CAV’11) (LNCS, Vol. 6806), G. Gopalakrishnan and
S. Qadeer (Eds.). Springer, 585–591.

[23] Bruno Lacerda, David Parker, and Nick Hawes. 2014. Optimal and dynamic
planning for Markov decision processes with co-safe LTL specifications. In 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems. 1511–1516.
https://doi.org/10.1109/IROS.2014.6942756

[24] Axel Legay, Anna Lukina, Louis Marie Traonouez, Junxing Yang, Scott A. Smolka,
and Radu Grosu. 2019. Statistical Model Checking. Springer International
Publishing, Cham, 478–504. https://doi.org/10.1007/978-3-319-91908-9_23

[25] Yibo Li, Zixin Wang, and Senyue Zhang. 2022. Path Planning of Robots Based
on an Improved A-star Algorithm. In 2022 IEEE 5th Advanced Information
Management, Communicates, Electronic and Automation Control Conference
(IMCEC), Vol. 5. 826–831. https://doi.org/10.1109/IMCEC55388.2022.10019799

[26] S. Mahdavi-Hezavehi, P. Avgeriou, and D. Weyns. 2017. Chapter 3 - A
Classification Framework of Uncertainty in Architecture-Based Self-Adaptive
Systems With Multiple Quality Requirements. In Managing Trade-Offs in
Adaptable Software Architectures, Ivan Mistrik, Nour Ali, Rick Kazman, John
Grundy, and Bradley Schmerl (Eds.). Morgan Kaufmann, Boston, 45–77. https:
//doi.org/10.1016/B978-0-12-802855-1.00003-4

[27] Shahar Maoz and Jan Oliver Ringert. 2018. On the software engineering
challenges of applying reactive synthesis to robotics. In Proceedings of the
1st International Workshop on Robotics Software Engineering, RoSE@ICSE 2018,
Gothenburg, Sweden, May 28, 2018, Federico Ciccozzi, Davide Di Ruscio, Ivano
Malavolta, Patrizio Pelliccione, and Andreas Wortmann (Eds.). ACM, 17–22.
https://doi.org/10.1145/3196558.3196561

[28] Shahar Maoz and Jan Oliver Ringert. 2021. Spectra: a specification language
for reactive systems. Software and Systems Modeling (14 Apr 2021). https:
//doi.org/10.1007/s10270-021-00868-z

[29] David Martínez, Guillem Alenyà, and Carme Torras. 2015. Safe robot execution
in model-based reinforcement learning. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 6422–6427. https://doi.org/10.1109/
IROS.2015.7354295

[30] Alejandro Marzinotto, Michele Colledanchise, Christian Smith, and Petter Ögren.
2014. Towards a unified behavior trees framework for robot control. In 2014
IEEE International Conference on Robotics and Automation (ICRA). 5420–5427.
https://doi.org/10.1109/ICRA.2014.6907656

[31] Petter Ogren. 2012. Increasing Modularity of UAV Control Systems using Computer
Game Behavior Trees. American Institute of Aeronautics and Astronautics. https:
//doi.org/10.2514/6.2012-4458 arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2012-
4458

[32] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. 2006. Synthesis of Reactive(1) Designs.
In Verification, Model Checking, and Abstract Interpretation, E. Allen Emerson
and Kedar S. Namjoshi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
364–380.

[33] Oliver Porges, Theodoros Stouraitis, Christoph Borst, and Maximo A. Roa. 2014.
Reachability and Capability Analysis for Manipulation Tasks. In ROBOT2013: First
Iberian Robotics Conference, Manuel A. Armada, Alberto Sanfeliu, and Manuel
Ferre (Eds.). Springer International Publishing, Cham, 703–718.

[34] M. Pouranvari and S. P. H. Marashi. 2013. Critical review of automotive steels
spot welding: process, structure and properties. Science and Technology ofWelding
and Joining 18, 5 (01 Jul 2013), 361–403. https://doi.org/10.1179/1362171813Y.
0000000120

[35] Philipp Schillinger, Mathias Bürger, and Dimos V. Dimarogonas. 2018.
Simultaneous task allocation and planning for temporal logic goals in
heterogeneous multi-robot systems. The International Journal of Robotics
Research 37, 7 (2018), 818–838. https://doi.org/10.1177/0278364918774135
arXiv:https://doi.org/10.1177/0278364918774135

[36] R.S. Sutton and A.G. Barto. 1998. Reinforcement Learning: An Introduction. IEEE
Transactions on Neural Networks 9, 5 (1998), 1054–1054. https://doi.org/10.1109/
TNN.1998.712192

[37] Jana Tumova, Alejandro Marzinotto, Dimos V. Dimarogonas, and Danica Kragic.
2014. Maximally satisfying LTL action planning. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1503–1510. https://doi.org/10.1109/
IROS.2014.6942755

[38] Maximilian Wagner, Peter Heß, Sebastian Reitelshöfer, and Jörg Franke. 2017.
Reachability analysis for cooperative processing with industrial robots. In
2017 22nd IEEE International Conference on Emerging Technologies and Factory

https://ojs.aaai.org/index.php/AAAI/article/view/11797
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.ijpe.2007.02.026
https://doi.org/10.1145/5397.5399
https://doi.org/10.1016/B978-0-12-802855-1.00014-9
https://doi.org/10.1016/B978-0-12-802855-1.00014-9
https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.1177/1729881420962263
https://arxiv.org/abs/https://doi.org/10.1177/1729881420962263
https://doi.org/10.1109/IROS.2018.8594404
https://doi.org/10.1109/IROS.2018.8594404
http://ceur-ws.org/Vol-2060/mekes8.pdf
https://doi.org/10.1016/j.scico.2017.07.004
https://doi.org/10.1109/IROS.2013.6696359
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/BF01211866
https://doi.org/10.1109/IROS.2017.8206426
https://doi.org/10.1109/CASE56687.2023.10260300
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.1109/IROS45743.2020.9341352
https://doi.org/10.1007/s10703-017-0276-9
https://doi.org/10.1007/s10703-017-0276-9
https://doi.org/10.1109/IROS.2014.6942756
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1109/IMCEC55388.2022.10019799
https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://doi.org/10.1145/3196558.3196561
https://doi.org/10.1007/s10270-021-00868-z
https://doi.org/10.1007/s10270-021-00868-z
https://doi.org/10.1109/IROS.2015.7354295
https://doi.org/10.1109/IROS.2015.7354295
https://doi.org/10.1109/ICRA.2014.6907656
https://doi.org/10.2514/6.2012-4458
https://doi.org/10.2514/6.2012-4458
https://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2012-4458
https://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2012-4458
https://doi.org/10.1179/1362171813Y.0000000120
https://doi.org/10.1179/1362171813Y.0000000120
https://doi.org/10.1177/0278364918774135
https://arxiv.org/abs/https://doi.org/10.1177/0278364918774135
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1109/IROS.2014.6942755
https://doi.org/10.1109/IROS.2014.6942755

Automation (ETFA). 1–6. https://doi.org/10.1109/ETFA.2017.8247646
[39] A. Wald. 1945. Sequential Tests of Statistical Hypotheses. The Annals of

Mathematical Statistics 16, 2 (1945), 117 – 186. https://doi.org/10.1214/aoms/
1177731118

[40] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine
Learning 8, 3 (01 May 1992), 279–292. https://doi.org/10.1007/BF00992698

[41] EricWete, Joel Greenyer, Daniel Kudenko, andWolfgang Nejdl. 2024. Multi-Robot
Motion and Task Planning in Automotive Production Using Controller-based
Safe Reinforcement Learning. https://doi.org/10.5281/zenodo.10482413

[42] Eric Wete, Joel Greenyer, Daniel Kudenko, Wolfgang Nejdl, Oliver Flegel,
and Dennes Eisner. 2022. A Tool for the Automation of Efficient Multi-

Robot Choreography Planning and Execution. In Proceedings of the 25th
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings (Montreal, Quebec, Canada) (MODELS ’22). Association
for Computing Machinery, New York, NY, USA, 37–41. https://doi.org/10.1145/
3550356.3559090

[43] Eric Wete, Joel Greenyer, Andreas Wortmann, Oliver Flegel, and Martin Klein.
2021. Monte Carlo Tree Search and GR(1) Synthesis for Robot Tasks Planning in
Automotive Production Lines. In 2021 ACM/IEEE 24th International Conference
on Model Driven Engineering Languages and Systems (MODELS). 320–330. https:
//doi.org/10.1109/MODELS50736.2021.00039

https://doi.org/10.1109/ETFA.2017.8247646
https://doi.org/10.1214/aoms/1177731118
https://doi.org/10.1214/aoms/1177731118
https://doi.org/10.1007/BF00992698
https://doi.org/10.5281/zenodo.10482413
https://doi.org/10.1145/3550356.3559090
https://doi.org/10.1145/3550356.3559090
https://doi.org/10.1109/MODELS50736.2021.00039
https://doi.org/10.1109/MODELS50736.2021.00039

	Abstract
	1 Introduction
	2 Background
	2.1 Multi-Robot Task Planning
	2.2 Multi-Robot Motion Planning
	2.3 Discrete-Time Markov Chain (DTMC)
	2.4 Q-learning

	3 Related Work
	4 Problem Description
	4.1 System Design
	4.2 System Rules
	4.3 Environment Assumptions

	5 Methodology
	5.1 System Specification
	5.2 Prism Model Specification
	5.3 System Performance Optimization with RL

	6 Use Case
	7 Results and Discussion
	8 Conclusion
	References

