
Streamlined Integration of GR(1) Synthesis and
Reinforcement Learning for Optimizing Critical

Cyber-Physical Systems
1st Eric Wete

Institute for Data Science
Leibniz University Hannover

Hannover, Germany
eric.roslin.wete.poaka@stud.uni-hannover.de

2nd Joel Greenyer
Department of Software Engineering

Fachhochschule für die Wirtschaft Hannover
Hannover, Germany

joel.greenyer@fhdw.de

3rd Tom Yaacov
Department of Computer Science

Ben-Gurion University of the Negev
Be’er Sheva, Israel

tomya@post.bgu.ac.il

4th Daniel Kudenko
L3S Research Center

Leibniz University Hannover
Hannover, Germany
kudenko@l3s.de or

5th Wolfgang Nejdl
L3S Research Center

Leibniz University Hannover
Hannover, Germany

nejdl@l3s.de

Abstract—Cyber-physical systems (CPSs) must meet safety-
critical requirements and optimization goals. Reactive controller
synthesis (RCS) from temporal logic (TL) specifications can
automatically construct agent behaviors that ensure safety and
liveness. However, RCS struggles with time and probability
aspects. Reinforcement Learning (RL) can optimize system
behaviors, but cannot guarantee correctness. RL and RCS
can be combined by shielding an agent with a synthesized
controller, ensuring that the agent behavior satisfies the
TL specification. However, this requires aligning different
models: the TL specification and the often hand-crafted RL
training environment code. We propose a three-step method,
centered around code generation and manual refinement, for
streamlining this alignment: (1) Formalize discrete environment
assumptions and guarantees into a Spectra TL specification. (2)
From it, automatically generate Gymnasium-compatible training
environment code. For the target code, we employ BPpy, which
enables a unique one-to-one mapping of the Spectra properties
to individual code modules. This allows users to refine time
and probability aspects as well as optimization goals without
misaligning the models. (3) Synthesize a permissive controller
from the TL specification and integrate it as a shield for the
agent. In contrast to previous work, our approach (a) guarantees
not only safety but also liveness; (b) even if the system is too
complex for RCS, we can leverage the generated BPpy code as a
model-at-runtime that shields the agent from unsafe actions.

Index Terms—reactive synthesis, behavioral programming,
reinforcement learning, model-at-runtime

I. Introduction

Designing cyber-physical systems (CPS) is challenging [1].
Especially, robotic systems must meet safety-critical
requirements, such as avoiding collisions and not harming
humans. Moreover, CPS must satisfy optimization goals
regarding resource-, energy-, and time consumption.

Automatic synthesis of reactive system controllers
from temporal logic (TL) specification (i.e., LTL: linear
temporal logic, Reactive Controller Synthesis, RCS) [2]
can automatically produce controllers from formalized
requirements (correct-by-construction). For GR(1), a fragment
of LTL, efficient symbolic algorithms for controller synthesis
exist [3], [4]. A GR(1) specification comprises environment
assumptions and system guarantees that can contain initial
properties, forbidden constraints (safety properties), and
conditions that must occur infinitely often (justice properties).
This is sufficient for specifying a broad range of systems.
Tools like Spectra [5] and slugs [6] can perform controller
synthesis and offer useful analysis features like realizability
checking (checking the existence of a correct controller) or
localize properties that cause inconsistencies.

The optimization of CPS, however, typically needs to
account for the timing of processes, such as movement times
or task durations, as well as the probabilities of events, such
as the likelihood of failures or varying inter-arrival times of
items in a production system. RCS is less suited for ensuring
optimization goals in a timed and probabilistic setting. This is
because tools like Spectra do not support these properties at
all, or because including them makes the synthesis problem
significantly more complex [7]–[9].

Reinforcement Learning (RL), on the other hand, can
successfully train agents that optimize their behavior in timed
and probabilistic settings, but cannot guarantee correctness.

Related work combines synthesis with planning [10] to
exploit the advantages of RCS, but also pursue optimization
goals. RCS can be combined with RL via an approach called
shielding. Shielding employs a synthesized controller to keep
the RL agent from taking unsafe actions [11]–[15].

https://orcid.org/0000-0002-4700-7096
https://orcid.org/0000-0003-0347-0158
https://orcid.org/0000-0002-0565-6506
https://orcid.org/0000-0003-3359-3255
https://orcid.org/0000-0003-3374-2193

Shielding approaches, however, critically depend on
maintaining the alignment between two different models at
different abstraction levels: the TL specification and the
code of the agent’s training environment. Developing a
suitable training environment that accurately captures the
CPS’ environment dynamics, including accurate time and
probability assumptions, can be a complex task on its own.
Ensuring the alignment with a TL specification requires
additional validation, which can be time-consuming, thus
complicating the successful application of shielding.

In this paper, we propose a streamlined approach that aids
in aligning the RCS and RL models by directly translating
GR(1) specifications, specifically those written in the Spectra
language [5], into executable Python code that realizes a
Gymnasium-compatible training environment for RL. The
translation that we propose ensures that individual Spectra
properties are mapped one-to-one to separate code modules.
This allows training environment engineers to refine the
code with timing and probability aspects without risking
misalignment with the Spectra specification.

The approach consists of three steps, illustrated in Fig. 1:
(1) Formalize the CPS system requirements into a TL

specification and synthesize a permissive controller that can
be used for shielding an agent. In this step, engineers
create a Spectra specification of the discrete CPS behavior,
abstracting from timing and probability aspects. The Spectra
tools help, for example, to detect and remove unnecessary
assumptions [16], which can reduce the complexity of the
synthesis task. Realizability checking and counter-strategy-
based debugging [17] can help engineers understand and
eliminate specification inconsistencies. In this step, engineers
maintain an affordable abstraction level to capture all critical
requirements, without over-specifying.

(2) Map the TL specification to executable training
environment code and refine that code with timing and
probability aspects as well as optimization goals. We compile
the Spectra specification to Python code based on BPpy [18],
a behavioral programming (BP) [19] framework for Python.
BPpy offers a unique way to provide an operational semantics
to Spectra: it allows us to encode each Spectra property in
a BPpy b-thread. These b-threads are executed concurrently
in lock-step, ensuring that all agent-vs-training environment
executions satisfy the assumptions as well as the guarantees
of the Spectra specification.

The Spectra-to-BPpy mapping is realized by defining
mapping rules for central Spectra idioms and concepts like
the Dwyer patterns [20] that are supported by Spectra [21].

Engineers can extend the b-threads to add timing and
probability aspects without fearing misalignment with the
Spectra specification. Moreover, engineers can express
optimization goals by adding reward signals to b-threads. For
example, rewards could be dispensed each time that a robot
delivers an item.

While this approach prevents misalignment of the
specification and training environment code, engineers are
not prevented from all wrongdoings. There is a risk of

introducing inconsistencies if, for example, there are two
Spectra properties constraining the same phenomenon and
engineers introduce different deadlines to the corresponding
b-threads. With awareness, such issues can mostly be avoided,
but some validation remains necessary.

(3) Train and deploy the agent shielded with the synthesized
controller. We train the agent in the training environment
based on a maskable RL algorithm (maskable PPO [22]) that
constrains the actions that the algorithm can explore in a state.
We define a masking function that queries the synthesized
controller for all permitted actions in the current state. To
achieve this, we developed a web service that wraps the
synthesized controller and a Java-based controller execution
algorithm supplied by Spectra tools. This service can be
called from the masking function. Overall, this architecture
allows the agent to explore and optimize behaviors that satisfy
the specified guarantees in any environment that satisfies the
refined assumptions.

Training Env (Gym)

Spectra GR(1)
specification

(Spectra tools)
controller synthesis

mapping
Spectra-to-BPpy

Formalize assumption
and guarantees

Initial
BPpy program

refine (add timing,
probabilities)

refined
BPpy program

permissive
controller

Masked RL
algorithm

current
state

Flow Component
Automatic Step
Manual Activity

unrealizable

realizable

ArtifactLegend
:

System
requirements

Timing- & probability
assumptions

1

2

3 Training of shielded agent

Controller exec. service

interacts
with

permitted
actions

Fig. 1. Overview of streamlined RCS/RL integration

We evaluate the approach using a pick-and-place robot cell
with varying parameters. In a setting where items arrive more
frequently in one location, the robot learns to visit this location
more frequently and ahead of time. We also observe that
controller-guided agents learn faster than unguided agents.

One critique of RCS-based approaches is that synthesis may
be infeasible for complex systems. However, our approach even
has its merits in this case. Instead of shielding the agent by a
synthesized controller, the generated BPpy code can be used
as a model-at-runtime: since the code also executes b-threads
directly derived from TL specification guarantees, they can
block the agent from taking forbidden actions—thus shielding
the agent even without the synthesized controller. While this
enforces safety guarantees, the liveness guarantees (properties
that occur infinitely often) can no longer be formally ensured
as they depend on the synthesized controller. Instead, smart
look-ahead execution (smart play-out [23]) could still ensure
liveness with a high probability.

Structure: Section II and Sect. III introduce a motivating use
case and the background. We describe the formal specification
approach in Sect. IV. Section V explains the Spectra-to-
BPpy mapping and how to refine time and probability aspects.
Section VI describes the integration of the BPpy program with
RL algorithms. We discuss evaluation results in Sect. VII,
related work in Sect. VIII, and conclude in Sect. IX.

II. Example Use Case
We consider a pick-and-place robot cell in which items

arrive at source locations, and a robot must pick up these
items and deliver them to target locations, see Fig. 2.

Source
S1

Target TConveyor belt

Conveyor belt

Conveyor belt

Agent
(robot controller)

actions: ToS1,
ToS2,
ToT

state variables:
(sensor inputs)
itemAtS1, ...,
itemDelivered

Source
S2

Fig. 2. A pick-and-place robot system

A software controller (agent) can control the robot by three
actions that send it to one of the three locations (ToS1, ToS2,
ToT). The agent has several input variables read from sensors:

• location (loc): The robot can be at one of the three
locations (AtS1, AtS2, AtT)

• itemAtS1: Is there an item at location S1?
• itemAtS2: Is there an item at location S2?
• itemPickedUp: Does the robot carry an item?
• itemDelivered: True transiently in a state where the

robot drops an item onto the target location.
The system must satisfy the following simple guarantee:

Periodically, the robot must deliver items to the target location,
i.e., itemDelivered must be true repeatedly.

The assumptions are:
1) Initially, the robot is at the target location.
2) If the agent orders the robot to go to a location, the robot

will arrive at that location (after some movement time),
unless the agent orders going to another location.

3) Items periodically arrive at the source locations (sources
have individual mean arrival times).

4) Items remain at source until the robot arrives to pick up.
5) An item can only be delivered if the robot is at the target.
6) If the robot arrives at the target location, it drops off the

item (the item will no longer be picked up).
7) A picked-up item stays picked up until delivered.
The assumptions include specific movement times of the

robot arm to get from one location to another. Moreover, we
assume probabilistic inter-arrival times of items at S1 and S2.
The key optimization goal of the system is to increase the item
delivery speed. If items arrive much faster in one location than
the other, a beneficial strategy for the robot is to move to that
location ahead of time in order to increase the delivery speed.

III. Preliminaries
A. Linear Temporal Logic

Linear Temporal Logic (LTL) [24] is a logic for specifying
properties of infinite sequences of states evolving over time.
LTL is widely used to specify the behaviors of systems and
software components. LTL [24] is specified over a finite set
of atomic propositions AP, which are Boolean statements that
assume a truth value true (⊤) or false (⊥) in every state.
LTL uses the fundamental logical operators ∨ (or) and ¬

(not), as well as the temporal modal operators X (next) and
U (until) [3].

An LTL formula is constructed from atomic propositions
using the LTL syntax defined recursively in Eq. (1):

φ := p |¬φ |φ ∨φ |Xφ |φ Uφ , (1)

where p denotes an atomic proposition.
An LTL formula is interpreted over an infinite sequence of

states s = s0,s1, . . ., also called a trace or execution, where a
state si defines the set of atomic propositions that hold in the
state at the i-th position of the execution s. That is, si ∈ P
and s = s0s1 . . . ∈ Pω for P = 2AP.

Let φ a formula, then s, i |= φ denotes that φ holds in state si
of execution s. The semantics of the basic operators is defined
as follows:

– ⊤= p∨¬ p
– ⊥= ¬⊤
– s, i |= p iff p ∈ si
– s, i |= ¬φ iff s, i ̸|= φ

– s, i |= φ1 ∨φ2 iff s, i |= φ1 or s, i |= φ2
– s, i |= Xφ iff s, i+1 |= φ

– s, i |= φ1Uφ2 iff ∃ j ≥ i : s, j |= φ2 and ∀k, i ≤ k < j : u,k |=
φ1

The formula φ satisfies a computation s, formally specified
as s |= φ , if and only if s,0 |= φ .

LTL defines additional future temporal operators F (finally)
with Fφ ≡⊤Uφ and G (globally) with Gφ ≡ ¬F¬φ .

PastLTL [25] introduces past operators H (historically) and
S (since), where Hφ ≡ ¬(⊤S¬φ) and the semantics of S is:

– s, i |= φ1Sφ2 iff ∃ j ≤ i : s, j |= φ2 and ∀k, j < k ≤ i : s,k |=
φ1

(φ2 held at some point in the past and φ1 has held since then.)

B. Büchi Automaton
A Büchi automaton (BA) [26] is a tuple B = (S,Σ, I,T,F),

where S is a finite set of states, Σ is an alphabet of symbols, I ∈
S is a set of initial states, T ⊆ S×Σ×S is a set of transitions,
and F ⊆ S is a set of accepting states. A BA accepts an infinite
sequence of symbols Σω if there exists a corresponding path
(matching the transition labels) from an initial state that visits
accepting states infinitely often. If we set Σ = 2AP, then BAs
can accept or reject executions as defined above; hence, BAs
can specify linear temporal properties over execution. Spectra
uses BAs to encode Dwyer patterns [21], and our approach
relies on the same principle for encoding patterns in BPpy.

C. Reactive Systems, GR(1), and Spectra
In reactive system specifications, we assume that a

system is described by variables that are partitioned into
system variables (controlled by the system) and environment
variables (uncontrolled by the system, i.e., controlled by the
environment). Atomic propositions are conditions over these
variables.

An execution of the system is now a sequence of states
where the system can assign values to system variables and
the environment can assign values to environment variables.

Reactive controller synthesis (RCS) is the problem of finding
a controller that can, for each state, always assign system
variables in such a way that the resulting execution satisfies
a given LTL specification, regardless of how the environment
assigns environment variables. A specification is realizable iff
such a controller exists.

The complexity of RCS for LTL is double-exponential in
the specification size [2]. Due to this impractical complexity,
an LTL subset was introduced that offers sufficient expressive
power for many cases, but for which synthesis is more efficient:
Generalized reactivity of rank 1 (GR(1)) [3], [27].

A GR(1) specification takes the form in Eq. (2) [5], [27]:

ϕ
sr = (θ e → θ

s)∧ (θ e → G((Hρ
e)→ ρ

s))∧(
θ

e ∧Gρ
e →

(
n∧

i=1

GFJ e
i →

m∧
j=1

GFJ s
j

))
, (2)

where:
– θ e = an assertion over the initial environment states
– θ s = an assertion over the initial system states
– ρe = the transition relation of the environment
– ρs = the transition relation of the system
– J e

i = a justice assumption, i.e., an assertion over the
specification variables to hold infinitely often for the
environment

– J s
j = a justice guarantee, i.e., an assertion over the

specification variables to hold infinitely often for the
system

Spectra [5] is a high-level specification language for
reactive systems with the expressive power of GR(1). A
Spectra specification comprises assumptions and guarantees
over controllable or uncontrollable variables. Assumptions
specify the environment behavior, whereas guarantees are
properties that the system must satisfy. Both assumptions and
guarantees can contain initial conditions, conditions that must
hold in all states (safety or invariant properties), and conditions
that must occur infinitely often (justice properties).

Synthesis and realizability checking require solving infinite
two-player games on a game graph. The run-time complexity
for this is polynomial in the size of the game graph [3],
[28], which is exponential in the number of variables. There
exist tools like the Spectra tools1 that implement symbolic
algorithms (based on BDDs: Binary Decision Diagrams) and
avoid explicit construction of the game graph. This makes
realizability checking efficient. Even symbolic representations
of controllers can be synthesized, so-called just-in-time
controllers [4], which often make below-exponential run-times
possible for synthesis.

The Spectra language supports specifications over different
variables with finite domains (boolean, enumerations, bounded
integers, fixed-length arrays). Initial conditions are defined
with the keyword ini, safety properties with the keyword
alw (always), and justice properties with alwEv (always

1https://github.com/SpectraSynthesizer

eventually); they are prefixed with gar for guarantees and
asm for assumptions.

D. Behavioral Programming
Behavioral Programming (BP) [19] is a modern paradigm

for modeling reactive systems from a set of modules that
capture separate behavioral aspects of the system. BP is
suitable for the specification of reactive systems that define
the environment and system behaviors. A BP program (b-
program) comprises independent modules called b-threads
that run concurrently. A b-thread defines a behavior with
some sequential control flow that may repeatedly reach
synchronization points, where the b-thread specifies three types
of event sets: requested, blocked, and waited-for events.

During execution, all b-threads execute their logic until they
reach the next synchronization point. Once all b-threads have
reached that synchronization point, a central event selection
mechanism selects a single event that is requested by at least
one b-thread and not blocked by any b-thread. Once an event
is selected, all b-threads requesting or waiting for the event are
notified and resume their execution. This process repeats until
no more events are requested and not blocked. It is possible for
the b-program to deadlock if all requested events are blocked.

E. BPpy: BP in Python
BPpy is a Python implementation of the BP paradigm [18],

where b-threads function as co-routines [29], [30]. BPpy
supports Satisfiability Modulo Theories (SMT)-based
events [31], where events are defined as assignments over
SMT variables. SMT expressions thus define variable value
assignments that the b-threads may request, block, or wait
for. The event selection strategy employs a solver (Z3) that
selects a variable value assignment that satisfies at least one
requested expression and none of the blocking expressions.

Listing 1 shows b-threads that implement a partial behavior
of a robot cell example. A b-thread is a Python generator with
the decorator thread preceding its declaration. The yield
sync() calls are the synchronization points that can declare
the three BP event sets (request, block, waitFor), where
each event set is described by an SMT expression. The first
b-thread (init) requests a variable assignment in which an
item is picked up but not delivered, the robot is at location
S1, and the selected action is sending the robot to the target
location. The second b-thread requests that the location is atT
after the selected robot action is toT. The b-thread does this
by first waiting for an event where act == toT.

The execution of this b-program starts all b-threads.
Since the second b-thread waits for the condition requested
by the first b-thread, both b-threads advance on this
synchronization point simultaneously. While the first b-thread
now terminates, the second b-thread requests loc == atT
next. The last b-thread never advances and continuously
forbids itemPickedUp when the robot is at the target.

IV. Formal Reactive System Specification
Step (1) of our approach (see Fig. 1) is to formalize the

system specification using Spectra. First, engineers identify

https://github.com/SpectraSynthesizer

1 Action, (toS1, toS2, toT) \
2 = EnumSort(’Action’, (’ToS1’, ’ToS2’, ’ToT’))
3 act = Const(’act’, Action)
4 itemPickedUp = Bool(’itemPickedUp’)
5 ...
6 @thread
7 def init():
8 yield sync(request=And(itemPickedUp,
9 Not(itemDelivered), loc == atS1, act == toT))

10 @thread
11 def on_to_target_move_to_target():
12 while True:
13 yield sync(waitFor=(act == toT))
14 yield sync(request=(loc == atT))
15 @thread
16 def at_target_implies_not_item_picked_up():
17 yield sync(block=And(loc==atT, itemPickedUp))

Listing 1. A set of b-threads in BPpy

the system/environment boundary and determine the (sensor)
inputs of the system as well as the (actuator) outputs. These
are modeled as environment resp. system variables. Additional
variables may be introduced if required to model additional
state aspects. Then engineers specify the behavioral properties.

Listing 2 presents an excerpt of the specification2 (see full
specification in [32]) that formalizes the informal guarantees
and assumptions given in Sect. II. Line 1 imports a pattern

1 import "SupplementalPatterns.spectra"
2
3 spec TwoSourcesRobot
4
5 sys {ToS1, ToS2, ToT} act;
6 env {AtS1, AtS2, AtT} loc;
7 env boolean itemAtS1;
8 env boolean itemAtS2;
9 env boolean itemPickedUp;

10 env boolean itemDelivered;
11
12 gar alwEv itemDelivered;
13
14 asm robot_is_initially_at_target:
15 ini loc=AtT;
16 asm items_periodically_arrive_at_S1:
17 alwEv itemAtS1;
18 ...
19 asm robot_arrives_at_S1_unless_ToS1_cancelled:
20 S_responds_to_P_unless_R_globally(loc=AtS1,act=ToS1,

act!=ToS1);
21 ...
22 asm alw_items_stay_at_S1_until_robot_arrives:
23 Globally_P_implies_Q_Weak_Until_R(
24 itemAtS1 and !itemPickedUp,
25 loc!=AtS1 and itemAtS1,
26 loc=AtS1 and !itemAtS1 and itemPickedUp);
27 ...
28 asm itemPickedUp_means_not_AtT:
29 alw itemPickedUp implies loc!=AtT;
30 asm itemDelivered_only_atT:
31 alw itemDelivered implies loc=AtT;
32 asm itemPickedUp_stays_true_until_itemDelivered:
33 alw itemPickedUp implies
34 next(itemPickedUp) or next(itemDelivered);

Listing 2. Spectra specification of a pick-and-place robot cell

library. Lines 5-10 define the controllable system variables and
the uncontrollable environment variables. Spectra supports
the modeling of LTL specification patterns, especially
the Dwyer patterns (Collection of property specification
patterns) [21]. We apply two custom patterns: The first
pattern, S_responds_to_P_unless_R_globally, is

2Artifacts available at https://doi.org/10.5281/zenodo.16338649.

used to specify assumption (2) in lines 19-20. The pattern
states that whenever condition p holds (second parameter),
condition s (first parameter) must hold eventually, unless
a third condition r holds (third parameter). In LTL, this
can be written as G(p → F(s ∨ r))3. This pattern applies
to all locations (S1, S2, and T). The second pattern,
Globally_P_implies_Q_Weak_Until_R means that if
p occurs, then q must hold until r holds, but r is not required
to occur. In LTL, this can be written as G(p → (qW r))4. This
pattern is used to formalize that when an item arrives at a
source location, it remains there until the robot arrives to pick
it up (assumption (4), lines 22-26). This pattern applies to both
source locations (S1 and S2).

Lines 16-17 leverage justice properties (alwEv) to specify
that items arrive periodically at the source locations (here S1)
see assumption (3). Lines 28-31 apply safety properties (alw)
to formalize assumptions (5) and (6). Lines 32-34 formalize
assumption (7); this property uses the next-state variable
reference to constrain the transition relation. Lines 14-15 show
an initial condition (ini) that models assumption (1). Finally,
line 12 shows the guarantee defined in Sect. II.

Patterns can be specified by translating their Büchi automata
(BA) representation to a Spectra property. Figure 3 shows
the BA for G(p → (q W r)), and Fig. 4 shows the BA for
G(p → F(s∨ r)).

s0start s1 s2

(¬p∨ r) (p∧q∧¬r)

(p∧¬q∧¬r)

r

(q∧¬r)

(¬q∧¬r)

1

Fig. 3. The Büchi automaton for G(p → (qW r))

s0start s1

(¬p∨ (s∨ r)) (p∧¬(s∨ r))

(s∨ r)

¬(s∨ r)

Fig. 4. The Büchi automaton for G(p → F(s∨ r))

Lines 2-13 in Lst. 3 show the representation in Spectra of
the BA for G(p → (qW r)). The pattern defines state variables
and an initial state via an ini condition. The transition
relation is encoded via an invariant (alw) property, and the
acceptance condition by an alwEv condition. Lines 16-24
similarly define the pattern of the BA for G(p → F(s∨ r)).

The specification shown above is realizable: the interaction
of the assumptions about the robot movement, the robot
picking up the item, and that picked-up items are delivered
when the robot reaches the target, force itemDelivered to
occur periodically if the agent selects the appropriate actions.

3The pattern G(p → F(s ∨ r)) is equivalent to the response pattern by
Dwyer, G(p → Fq), when q = s∨ r. We introduce this variant because s and
r are handled differently in the timed refinement later, cf. Sect. V-C

4φ1 W φ2 ≡ (φ1 U φ2)∨G φ1

https://doi.org/10.5281/zenodo.16338649

1 // LTL: G(p -> (q W r))
2 pattern Globally_P_implies_Q_Weak_Until_R(p, q, r) {
3 var { S0, S1, S2 } state;
4 ini state=S0;
5 alw ((state=S0 & (!p | r) & next(state=S0)) |
6 (state=S0 & (p & q & !r) & next(state=S1)) |
7 (state=S0 & (p & !q & !r) & next(state=S2)) |
8 (state=S1 & (r) & next(state=S0)) |
9 (state=S1 & (q & !r) & next(state=S1)) |

10 (state=S1 & (!q & !r) & next(state=S2)) |
11 (state=S2 & (true) & next(state=S2)));
12 alwEv (state=S0 | state=S1);
13 }
14
15 // LTL: G(p -> F(s | r))
16 pattern S_responds_to_P_unless_R_globally(s, p, r) {
17 var { S0, S1 } state;
18 ini state=S0;
19 alw ((state=S0 & ((!p) | (p & (s | r))) & next(state=

S0)) |
20 (state=S0 & (p & !(s | r)) & next(state=S1)) |
21 (state=S1 & (s | r) & next(state=S0)) |
22 (state=S1 & (!(s | r)) & next(state=S1)));
23 alwEv (state=S0);
24 }

Listing 3. Spectra patterns G(p → (qWr)) and G(p → F(s∨ r))

V. Mapping Spectra to BPpy
Step (2) of our approach is to map the Spectra specification

to BPpy code and refine it with timing properties, probabilities,
as well as optimization goals in the form of reward signals. We
define a mapping for the central Spectra constructs, including
Dwyer patterns [21] and other user-defined patterns. Patterns
are mapped to b-threads that encode the corresponding
BA, which can be constructed automatically from its LTL
formulation [33].

A. Variables and Logical Operators
Spectra variables of type Boolean, enumeration, and

bounded integer are mapped to Z3 types over which an SMT-
based BPpy program can specify expressions, see Lst. 1 lines
1-4. Bounded integer variables are mapped to Z3 integer
variables along with a b-thread that blocks values outside of
the specified bounds. Spectra logical operators are translated
to Z3 expressions: not, and, or, implies in Spectra
correspond to Not, And, Or, Implies in Z3, respectively.

B. Mapping Assumptions
1) Initial Properties: The initial properties (ini) map to

b-threads that request the initial condition in the first step and
block its negation. See lines 1-4 in Lst. 4 corresponding to
lines 14-15 in Lst. 2.

2) Invariant Properties: The invariant (safety) properties
(alw) are mapped to b-threads that forever block the negation
of the required property (cf. lines 5-8 in Lst. 4 mapped to
lines 28-29 in Lst. 2). The invariant properties with next-state
variable reference constrain the allowed transitions in Spectra.
In BPpy, we relate the last-state variable values to the next-
state variable values. Repeatedly, we first take the last-state
values of all variables outside of the next-state references and
then use them to block the negation of the invariant property.
As an example, lines 9-16 in Lst. 4 show the mapping of the
invariant property in lines 32-34 of Lst. 2.

1 @thread
2 def robot_is_initially_at_target():
3 cond = And(act == toT, wait_t == 0.0)
4 yield sync(request=cond, block=Not(cond))
5 @thread
6 def itemPickedUp_means_not_AtT():
7 cond = Implies(itemPickedUp, loc != atT)
8 yield sync(block=Not(cond))
9 @thread

10 def itemPickedUp_stays_true_until_itemDelivered():
11 e = yield sync(waitFor=true)
12 while True:
13 prev_itemPickedUp = e.eval(itemPickedUp)
14 e = yield sync(block=Not(Implies(

prev_itemPickedUp,
15 Or(itemPickedUp, itemDelivered))),
16 waitFor=true)

Listing 4. Mapping initial and safety properties

3) Justice Properties: A justice assumption requires a
condition to hold repeatedly, but does not specify the
time delay or regularity. To execute a timed/probabilistic
environment simulation, the user refines this non-determinism
by specifying either a constant delay or a probability
distribution for the delay.

Lines 1-4 in Lst. 5 show the mapping for the justice property
in lines 16-17 in Lst. 2. The property maps to a b-thread that
calls the function repeatedly_p, which is a higher-order
function that takes a desired condition to hold repeatedly as
the parameter p. As the second parameter, the function takes
an interval function that specifies the time delay between
periods where p is true. Specifying the interval function is
a timed, probabilistic refinement of the specification. Here,
exponential(2.0) is a function that samples values from
a negative exponential distribution with an average expected
time of β = 2.0, i.e., the user has refined that items arrive
at location S1 randomly, with a mean time of 2 seconds
(assuming the unit is seconds) after the previous item was
removed. The intervals can also be specified using uniform,
normal, or other distributions, depending on the nature of the
phenomenon.

The function repeatedly_p (lines 6-9 in Lst. 5) calls the
function p_true_after_time_unless_r, forwarding
the desired condition p as well as time delay values from
invoking the interval() function.

The function p_true_after_time_unless_r ensures
that the given condition p occurs exactly after the given time
t unless a release condition r occurs before. It requests the
condition p to occur exactly after the given deadline, but also
allows non-p events to occur before. If a non-(p∨ r)-event
happens (line 19), it recalculates the remaining time for the
p-deadline (line 20) and requests p again.

When calling p_true_after_time_unless_r from
repeatedly_p, there is no release condition r, so the
default applies (r=False).

C. Mapping Patterns
Spectra patterns are mapped by translating their BA

representations to BPpy code. Patterns can specify safety
properties, which manifest in the BA with a non-accepting
sink state, like state s2 for the pattern G(p → (q W r))

1 @thread
2 def items_periodically_arrive_at_S1():
3 p = itemAtS1
4 yield from repeatedly_p(p, exponential(2.0))
5
6 def repeatedly_p(p, interval):
7 while True:
8 yield sync(waitFor=Not(p))
9 yield from p_true_after_time_unless_r(p,

interval())
10
11 def p_true_after_time_unless_r(p, t, r=False):
12 rem_t = t
13 while True:
14 e = yield sync(
15 request=And(wait_t == rem_t, p),
16 block=Or(wait_t < 0.0, wait_t > rem_t,
17 And(wait_t < rem_t, p)),
18 waitFor=True)
19 if e.eval(Or(p,r)): break # p or r occurred
20 rem_t -= z3_float_as_float(e.eval(wait_t))
21 return e

Listing 5. Mapping of a justice assumption

shown in Fig. 3. Patterns can also specify liveness properties,
like S_responds_to_P_unless_R_globally, G(p →
F(s ∨ r)). The liveness component (F...) leads to a non-
accepting state in the BA on p, from which an accepting state
can only be reached again if s∨r occurs, see the BA in Fig. 4.

The BAs are mapped to BPpy using the following rules:
• Transitions to non-accepting sink states are mapped to
block conditions

• Transitions from non-accepting states are mapped to calls
of the p_true_after_time_unless_r function
introduced above (Lst. 5). If the transition is labeled with
a disjunction of subconditions, like (s ∨ r), these can
be handled differently depending on the modality with
respect to time:
– a condition that must occur exactly after the given

deadline: is mapped to parameter p of the function
p_true_after_time_unless_r.

– a “release” condition that may occur before the given
deadline: is mapped to parameter r of the function
p_true_after_time_unless_r.

• All other transitions are mapped to waitFor conditions.
Listing 6 shows the mapping of the property in line 22

of Lst. 2 leveraging the pattern G(p → (q W r)) (cf. BA
in Fig. 3). Listing 7 shows the mapping for the property in
line 19 of Lst. 2 based on the pattern G(p → F(s∨ r)). s and
r have a different modality—r is the release condition.

D. Mapping Guarantees
The guarantee initial conditions and invariants are mapped

to BPpy in the same way as assumptions (Sect. V-A). Mapping
the invariants is not necessary when the agent is shielded by
a synthesized controller because it guarantees to satisfy these
invariants. However, if the BPpy program is executed without
a shielding controller, the invariant guarantee-b-threads can
forbid the agent from selecting forbidden actions. (We outlined
in the introduction how this could be useful for shielding the
agent even if no controller can be synthesized.)

Justice properties represent desirable outcomes that should
occur periodically and are used to specify rewards that model

1 @thread
2 def alw_items_stay_at_S1_until_robot_arrives():
3 p = And(itemAtS1, Not(itemPickedUp))
4 q = And(loc!=atS1, itemAtS1)
5 r = And(loc==atS1, Not(itemAtS1), itemPickedUp)
6 yield from globally_p_implies_q_weak_until_r(p, q, r

)
7
8 def globally_p_implies_q_weak_until_r(p, q, r):
9 s0_s0 = Or(Not(p), r)

10 s0_s1 = And(p, q, Not(r))
11 s0_s2 = And(p, Not(q), Not(r))
12 s0_wait_cond = Or(s0_s0, s0_s1)
13 s1_s0 = r
14 s1_s1 = And(q, Not(r))
15 s1_s2 = And(Not(q), Not(r))
16 s1_wait_cond = Or(s1_s0, s1_s1)
17
18 class State(Enum):
19 S0 = 0
20 S1 = 1
21
22 s = State.S0
23 while True:
24 if s == State.S0:
25 e=yield sync(block=s0_s2,waitFor=s0_wait_cond

)
26 if e.eval(s0_s1): s = State.S1
27 elif s == State.S1:
28 e=yield sync(block=s1_s2,waitFor=s1_wait_cond

)
29 if e.eval(s1_s0): s = State.S0

Listing 6. Implementation of the pattern G(p → (qWr))

1 @thread
2 def robot_arrives_at_S1_unless_ToS1_cancelled():
3 s = loc==atS1
4 r = act!=toS1
5 p = (act==toS1)
6 yield from s_responds_to_p_globally_unless_r(s, p, r

, normal(2.0,0.1))
7
8 def s_responds_to_p_globally_unless_r(s, p, r, interval)

:
9 s0_s0 = Or(Not(p), Or(s, p))

10 s0_s1 = And(p, Not(Or(s, p)))
11 s0_wait_cond = Or(s0_s0, s0_s1)
12 s1_s0_request = s
13 s1_s0_release = r
14
15 class State(Enum):
16 S0 = 0
17 S1 = 1
18
19 s = State.S0
20 while True:
21 if s == State.S0:
22 e = yield sync(waitFor=s0_wait_cond)
23 if e.eval(s0_s1): s = State.S1
24 elif s == State.S1:
25 yield from p_true_after_time_unless_r(
26 s1_s0_request, interval(), s1_s0_release

)
27 s = State.S0

Listing 7. Implementation of the pattern G(p → F(s∨ r))

the agent’s optimization goals. Listing 8 illustrates how the
justice guarantee in line 12 in Lst. 2 is mapped to a b-
thread that calls the function alw_reward_on_p. This
function computes and dispenses rewards (using BPpy idiom
localReward for RL [18]) based on the occurrences of
the desired property p and elapsed time. The parameter
values for the function call are case-specific constraints. Here,
itemDelivered is rewarded with 10 points, but passing
time is penalized with reward −1 per time unit.

1 @thread
2 def items_delivered_periodically():
3 yield from alw_reward_on_p(itemDelivered, 10.0,

-1.0)
4
5 def alw_reward_on_p(p, p_reward, t_reward=0.0):
6 reward = 0.0
7 while True:
8 e = yield sync(request=true, localReward=reward)
9 reward = p_reward if is_true(e.eval(p)) else 0.0

10 reward += t_reward * z3_float_as_float(e.eval(
wait_t))

Listing 8. Mapping justice guarantees specifying rewards

E. Mapping non-deterministic choices
In Spectra, it is common to under-specify the environment

behavior. Constraints on the transition relation (using alw) are
usually encoded so that they leave non-deterministic choices
for the environment. Also in justice properties or when using
patterns, non-determinism is common.

However, for the operational behavior in BPpy, this non-
determinism must be refined to deterministic or probabilistic
choices. (Where non-determinism remains unrefined, the SMT
solver produces choices unpredictably.)

In a hypothetical extension of our pick-and-place robot, we
might specify that the robot may non-deterministically break
items and fail to deliver them. In the BPpy program, we need to
indicate that breaking items occurs with some (usually small)
probability. To achieve this, the user has two options:

• Add extra b-threads: Users can refine these choice
probabilities by implementing additional b-threads that
block different choices with certain probabilities.

• Specify pattern variants: Users
can specify pattern variants, like
S1_or_S2_responds_to_P_globally, which
accepts two conditions s1 and s2 as parameters. This
variant can then be mapped to a BPpy function that
takes a probability parameter to determine the likelihood
of choosing s1 over s2 in response to p.

In our example, there is non-determinism, e.g., because the
Spectra specification in Lst. 2 allows itemPickedUp to
be true spontaneously even if no item has arrived. However,
in the BPpy program, we do not assume that this variable
becomes true spontaneously. Instead, we leverage the SMT
solver to select the previous value unless specified otherwise.
If a different behavior is required, the user must implement an
additional b-thread to enforce specific constraints.

When refining the BPpy program, it is possible for users
to introduce inconsistencies when different time constraints
or probabilities are specified for the same phenomenon in
different b-threads. This could result in inaccurate behavior
or deadlocks. Hence, validation of the refinements is required,
like any RL training environment implementation should be
tested for its accurate reflection of the environment behavior.

VI. RL Integration with Gymnasium

BPpy programs can be integrated with the Gymnasium
environment [34] (cf. [18]). The observation space comprises

the variables constituting the state space. The action space is
the set of all actions the system can take: all possible system
variable assignments. If multiple system variables are involved,
the action space expands to the cross-product of all possible
value assignments for each variable. The execution of the
controller synthesized from the Spectra specification is based
on a controller executor component supplied by Spectra tools.
This executor is implemented in Java and wrapped in an HTTP
service to integrate with the RL framework (see Fig. 1).

The shielding of the agent is achieved by the process
illustrated in Fig. 5. The agent learns based on a maskable
RL algorithm, here, MaskablePPO [22], which interacts with
a masking function.

Initialization: the agent calls reset() on the RL
environment. This initializes a B-Program with an initial state
(s0) that is returned to the agent.

Step-cycle: Based on the returned state, the agent invokes
the masking function (1) that calls the controller service (2) to
retrieve the valid actions in the given state (3), from which the
action mask is computed (4). Next, the agent selects an action
and calls step(action) on the environment (Gymnasium)
(5). The RL environment advances the B-Program based on
the action (6) and returns the next state and reward signal
(st+1, rt+1) to the agent (7,8). The process is repeated until
the B-Program terminates or the maximum step count for
a training episode is reached. The interaction might also
continue indefinitely if the agent is eventually deployed.

Agent / RL-Alg.
(MaskablePPO)

RL-Environment
(Gym)

B-Program
(BPpy)

Masking
Function

Controller
Serviceget_action_

mask(s0/st+1)

action_mask

step(action)

advance_
bthreads
(action)

st+1,rt+1

st+1,
rt+1

get_
valid_

actions(st+1)

valid_actions

1

4

5

6 7
8

2

3

reset()
s0

intialization

Fig. 5. Computing safe actions for the controller-guided agent

In an environment that satisfies the specified assumptions,
the agent always follows the synthesized controller, which
guarantees that the resulting behavior is correct w.r.t. the
Spectra specification. The masking function may fail to map
an environment state to a controller state if the environment
does not satisfy the assumptions. This may be either because
engineers introduced an error during the refinement, or
because a real environment, in which the agent is deployed,
does not behave as assumed. In this case, the strict formal
interpretation of the Spectra specification would allow the
agent to choose any action, because any behavior would
satisfy the specification once the assumption (premise) is
violated. However, in practice, it is advisable to implement
an application-specific minimum-risk behavior; our pick-and-
place would stop the movement of the robot.

We defined a reward function and applied its computed
value in BPpy sync statements. For pick-and-place use cases,
the reward function is defined as r = c+α × t, where: r is the
reward when the goal is reached, i.e., an item is delivered, c is

a constant that represents the initial reward, i.e., the maximal
reward if the goal is achieved without elapsed time, α is the
penalty per time unit, and t is the elapsed time from the last
item delivery.

VII. Evaluation Results
We apply our approach to an industrial pick-and-place robot

cell. The item inter-arrival times at S1 and S2 are 25s and
5s. The robot movement times between locations are specified
from uniform distributions in [2.5,3.5]s, [3,3.5]s, and [3,3.5]s
for S1, S2, and Target, respectively. We apply different
RL algorithms [35], [36] to train our RL agent: Advantage
Actor-Critic (A2C), Deep Q-Network (DQN), Proximal Policy
Optimization (PPO), and MaskablePPO that extends PPO with
our function mask (see Fig. 5). The models were trained in
10000 steps. The step reward is 10×β +α ×t, where β = 1 if
an item is delivered or 0 otherwise, α =−1 is the penalty per
time unit, and t is the elapsed time between steps. The learning
rate is 1×10−4, and the exploration rate decayed linearly from
1 to 0.05 with 0.1 decay fraction per step. See [32].

Table I shows the total reward, average value, and standard
deviation for each RL algorithm over 10000 steps. It also
shows the total number of items delivered and the delivery
speed of the items per time unit.

TABLE I
Experiment results: reward and item delivery

Reward Item delivery

Algorithm Total
(×103)

Avg. Std. Total
(×103)

Speed

DQN −12.8 −206.9 109.5 1.5 0.06
A2C −5.1 −81.9 73.4 1.6 0.08
PPO −1.1 −18.3 44.1 1.7 0.10
Mask.PPO 1.5 23.9 12.6 2.1 0.14

RQ1: Does controller-guided RL speed up learning? Is the
training of a controller-guided agent faster than that of an
unguided agent?

The controller-guided MaskablePPO algorithm outperforms
the three other unguided algorithms; see the average rewards
in Fig. 6.

Fig. 6. RL model evaluation rewards

These results confirm our expectations. The agent learns to
anticipate where items arrive more frequently. Additionally,

the controller-guided agent has an advantage, as the controller
prevents incorrect actions that an unguided agent explores.
The controller speeds up learning and reduces the agent’s
exploration space. Unguided algorithms take longer to train
and have higher variance.

RQ2: How does RCS scale? What are the boundaries in
which controller-guided RL is feasible?

To evaluate the synthesis scalability, we measured synthesis
times for settings with 2-5 robots, up to 20 source locations,
and up to 3 target locations. For some cases, synthesis times
can reach 5 minutes due to state-space explosion. (See Tab. II).
Other evaluations of Spectra performance showed promising
results [4], [5], [16]. One of the boundaries in applying
controller-guided RL is thus the computational complexity
inherent to RCS. We also discussed earlier that real-world
environments may also violate specified assumptions. With our
technique, assumption violations can be detected; we suggest
to add case-specific minimum-risk behavior for such cases.

TABLE II
Reactive synthesis times under various problem settings

Robots Sources Destinations Synthesis Time (s)

2 2 1 0.3
2 5 3 1.1
2 20 3 229.0
3 2 1 1.0
3 5 3 85.0
4 3 1 7.1
4 5 3 290.9
5 2 1 9.5

While the industrial pick-and-place example demonstrates
the feasibility of our approach, it may not fully reflect the
range of complexities present in broader real-world systems.
However, we contend that it is reasonably representative and
plan to study more examples in future work.

VIII. Related Work
There exist approaches that consider timed and probabilistic

properties during controller synthesis. UPPAAL Stratego [37]
can synthesize strategies in stochastic priced timed games.
Ehlers et al. [6], [7] consider synthesis with timing and
optimality aspects. Dräger et al. [41] investigate controller
synthesis for systems that are probabilistic, real-time, and
partially observable. PRISM can be used for the automated
synthesis of optimal controllers for autonomous agents [42].

Since controller synthesis under consideration of timed and
stochastic properties is hard, the idea is to combine discrete
controller synthesis with RL via shielding [43]. Shielded RL is
introduced by Alshiekh [11]. Koenighofer et al. [44] propose
synthesizing shields from safety properties and handcrafted
MDP abstraction of the environment. See also Odriozola et
al. [45] for a review of shielded RL approaches. Koenighofer et
al. [46] described a method for computing shields at runtime.

Our work considers discrete shields only and targets, in
addition to safety guarantees, also liveness (justice) guarantees
as well as the modeling of safety and liveness assumptions,

TABLE III
Comparison of related work across key criteria

Paper Supported
properties

Correctness
Guarantee

RL Timing Property
Handling

Probability
Handling

Controller
synthesized from

Ehlers et al. 2013
(Shortcut through an
evil door) [7]

GR(1) (non-timed,
non-stoch.)

Hard No Explicit delay cost in
discrete time

No LTL specification,
GR(1)

David et al. 2015 (Uppaal
Stratego) [37]

TCTL subset on
stoch./priced Timed
Game Automata

Hard No stochastic and timed
games

stochastic and timed
games

TGA + TCLT
specification

Könighofer et al. 2020
(Shield Synthesis for RL)
[38]

Safety (via LTL,
PLTL, or Timed
Automata)

Hard Yes Timed automata for
timing guarantees

PLTL for probabilistic
guarantees

Safety spec +
handcrafted env.
abstraction (MDP)

Hasanbeig 2020
(Cautious RL with
logical constraints) [39]

LTL (via LDBA, non-
timed, non-stoch.)

Soft (via
rewards)

Yes Not supported During RL no synthesis, online-
tracking of LDBA

Wete et al. 2021 (MCTS
and GR(1) synthesis)
[10]

GR(1) (non-timed,
non-stoch.)

Hard No MCTS optimization
on timed env.-sim.
(but non-timed spec)

MCTS optimization
on env.-sim. (but
non-prob. spec)

LTL Specification,
GR(1) (Spectra)

Wete et al. 2024
(Controller-based safe
RL) [40]

PCTL (checked on
PRISM model)

Hard Yes Timed properties via
PRISM

Stochastic properties
via PRISM

given as manually
modeled (verified)
PRISM model

Brorholt et al. 2024
(Shielded RL for Hybrid
Systems) [15]

Predicates over hybrid
state variables

Soft
(statistical)

Yes stochastic hybrid
automata

stochastic hybrid
automata

finite-state hybrid
abstraction (sampled)
+ safety predicates

This paper GR(1) (non-timed,
non-stoch.)

Hard Yes Env.-sim. refinement
(derived from non-
timed spec)

Env.-sim. refinement
(derived from non-
stoch. spec)

LTL specification,
GR(1) (Spectra)

which makes it possible to capture the environment dynamics
declaratively. Most importantly, our paper addresses a
key challenge in the aforementioned work, which requires
handcrafting an MDP to specify the environment. However,
creating such an abstraction is a key challenge in practice.
Our approach reverses this process by starting at a higher
abstraction level. We suggest first specifying the critical
discrete requirements and assumptions (safety and liveness
properties), in a temporal logic-based Spectra specification.
By ensuring that we can synthesize a controller (shield) from
this specification, we ensure first and upfront that the agent’s
discrete design is realizable. From there, we offer a streamlined
approach for refining, and eventually optimizing, timed and
stochastic properties.

Brorholt et al. [15] propose a method to construct
approximate safety shields for hybrid systems, using state
predicates and sample-based abstractions of hybrid MDPs.
Related is also the work of Hasanbeig et al. [39]. Instead
of shielding, they translate an LTL specification into a Büchi
automaton. During learning, the agent tracks its progress in the
BA, receiving rewards that guide it toward accepting states.

Wete et al. [10], [47] consider the safe and optimized
execution of a multi-robot system by executing controllers
synthesized from Spectra GR(1) specifications with MCTS-
based planning. Following work [40] compares optimization
via planning vs. learning, where the agent is shielded by
a controller that is designed manually (instead of being
synthesized, as our approach) and for which probabilistic
safety and liveness properties are verified by statistical model
checking (via PRISM [48]).

RL-based execution methods for BP were also introduced
by Yaacov [49] and Ashrov and Katz [50].

Selected related works are compared in Tab. III.

IX. Conclusion

This paper presents a novel approach for synthesizing
correct and optimal controllers for systems in a timed and
probabilistic environment. By combining Spectra’s GR(1)
specification and controller synthesis with RL, our work not
only shields the agent from taking unsafe actions, but also
guarantees that the agent satisfies liveness/justice guarantees.

In contrast to previous shielding approaches, our approach
addresses the challenge of maintaining the alignment of
models at different levels of abstraction for controller synthesis
on the one hand and RL on the other.

A core technical contribution of our work is using BPpy for
the training environment code, which allows for an encoding
where each Spectra constraint is mapped into independent
b-threads. Specifically, we conceived a way to encode timing
and probability in SMT-based behavioral programming. This
allows engineers to refine timing and probabilistic details while
minimizing the risk of misaligning the involved models.

Our evaluation demonstrates the feasibility of this approach
and even shows that controller-guided agents learn optimized
behaviors faster while maintaining correctness guarantees.

In future work, we plan to expand the patterns and
translation rules to cover other rich features of Spectra, such
as triggers [51]. We are also investigating how to extend
Spectra, so that time and probability annotations can be added
already at the specification level.

References

[1] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in 2008
11th IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC). IEEE, 2008, pp. 363–369.

[2] A. Pnueli and R. Rosner, “On the Synthesis of a Reactive Module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’89. New York,
NY, USA: Association for Computing Machinery, 1989, p. 179–190.
[Online]. Available: https://doi.org/10.1145/75277.75293

[3] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of Reactive(1) Designs,”
in Verification, Model Checking, and Abstract Interpretation, E. A.
Emerson and K. S. Namjoshi, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 364–380.

[4] S. Maoz and I. Shevrin, “Just-in-time reactive synthesis,” in
Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’20. New York, NY, USA:
Association for Computing Machinery, 2021, p. 635–646. [Online].
Available: https://doi.org/10.1145/3324884.3416557

[5] S. Maoz and J. O. Ringert, “Spectra: a specification language for
reactive systems,” Software and Systems Modeling, Apr 2021. [Online].
Available: https://doi.org/10.1007/s10270-021-00868-z

[6] R. Ehlers and V. Raman, “Slugs: Extensible GR(1) synthesis,” in
International Conference on Computer Aided Verification (CAV), ser.
Lecture Notes in Computer Science (LNCS), vol. 9780. Springer, 2016,
pp. 333–339.

[7] G. Jing, R. Ehlers, and H. Kress-Gazit, “Shortcut through an evil
door: Optimality of correct-by-construction controllers in adversarial
environments,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013, pp. 4796–4802.

[8] K. W. Wong, R. Ehlers, and H. Kress-Gazit, “Resilient, provably-correct,
and high-level robot behaviors,” IEEE Transactions on Robotics, vol. 34,
no. 4, pp. 936–952, 2018.

[9] C. Belta and S. Sadraddini, “Formal methods for control synthesis:
An optimization perspective,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 2, pp. 115–140, 2019, first published
as a Review in Advance on December 10, 2018. [Online]. Available:
https://doi.org/10.1146/annurev-control-053018-023717

[10] E. Wete, J. Greenyer, A. Wortmann, O. Flegel, and M. Klein, “Monte
Carlo Tree Search and GR(1) Synthesis for Robot Tasks Planning in
Automotive Production Lines,” in 2021 ACM/IEEE 24th International
Conference on Model Driven Engineering Languages and Systems
(MODELS), Oct 2021, pp. 320–330.

[11] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference
and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence, ser. AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[12] N. Jansen, B. Könighofer, S. Junges, A. Serban, and R. Bloem, “Safe
Reinforcement Learning Using Probabilistic Shields (Invited Paper),”
in 31st International Conference on Concurrency Theory (CONCUR
2020), ser. Leibniz International Proceedings in Informatics (LIPIcs),
I. Konnov and L. Kovács, Eds., vol. 171. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 3:1–3:16.
[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2020/12815

[13] J. Riley, R. Calinescu, C. Paterson, D. Kudenko, and A. Banks,
“Assured deep multi-agent reinforcement learning for safe robotic
systems,” in Agents and Artificial Intelligence: 13th International
Conference, ICAART 2021, Virtual Event, February 4–6, 2021, Revised
Selected Papers. Berlin, Heidelberg: Springer-Verlag, 2021, p. 158–180.
[Online]. Available: https://doi.org/10.1007/978-3-031-10161-8 8

[14] S. Bharadwaj, R. Bloem, R. Dimitrova, B. Konighofer, and U. Topcu,
“Synthesis of minimum-cost shields for multi-agent systems,” in 2019
American Control Conference (ACC), 2019, pp. 1048–1055.

[15] A. H. Brorholt, P. G. Jensen, K. G. Larsen, F. Lorber, and C. Schilling,
“Shielded reinforcement learning for hybrid systems,” in Bridging the
Gap Between AI and Reality, B. Steffen, Ed. Cham: Springer Nature
Switzerland, 2024, pp. 33–54.

[16] R. Shalom and S. Maoz, “Which of My Assumptions are Unnecessary
for Realizability and Why Should I Care?” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), May 2023,
pp. 221–232.

[17] S. Maoz and Y. Sa’ar, “Counter play-out: executing unrealizable
scenario-based specifications,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. IEEE Press, 2013,
p. 242–251.

[18] T. Yaacov, G. Weiss, A. Ashrov, G. Katz, and J. Zisser, “Exploring
and evaluating interplays of bppy with deep reinforcement learning and
formal methods,” in Proceedings of the 20th International Conference on
Evaluation of Novel Approaches to Software Engineering. SciTePress,
2025, pp. 27–40.

[19] D. Harel, A. Marron, and G. Weiss, “Behavioral programming,”
Commun. ACM, vol. 55, no. 7, p. 90–100, jul 2012. [Online]. Available:
https://doi.org/10.1145/2209249.2209270

[20] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 21st
International Conference on Software Engineering, ser. ICSE ’99.
New York, NY, USA: Association for Computing Machinery, 1999, p.
411–420. [Online]. Available: https://doi.org/10.1145/302405.302672

[21] S. Maoz and J. O. Ringert, “Gr(1) synthesis for ltl specification
patterns,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 96–106. [Online].
Available: https://doi.org/10.1145/2786805.2786824

[22] S. Huang and S. Ontañón, “A closer look at invalid action
masking in policy gradient algorithms,” The International FLAIRS
Conference Proceedings, vol. 35, May 2022. [Online]. Available:
https://journals.flvc.org/FLAIRS/article/view/130584

[23] D. Harel, H. Kugler, R. Marelly, and A. Pnueli, “Smart play-out,”
in Companion of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’03. New York, NY, USA: Association for Computing
Machinery, 2003, p. 68–69. [Online]. Available: https://doi.org/10.1145/
949344.949353

[24] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), 1977, pp. 46–57.

[25] D. M. Gabbay, “The Declarative Past and Imperative Future: Executable
Temporal Logic for Interactive Systems,” in Temporal Logic in
Specification. Berlin, Heidelberg: Springer-Verlag, 1987, p. 409–448.

[26] J. R. Büchi, On a Decision Method in Restricted Second Order
Arithmetic. New York, NY: Springer New York, 1990, pp. 425–435.
[Online]. Available: https://doi.org/10.1007/978-1-4613-8928-6 23

[27] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,
“Synthesis of Reactive(1) designs,” Journal of Computer and System
Sciences, vol. 78, no. 3, pp. 911 – 938, 2012, in Commemoration of
Amir Pnueli. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0022000011000869

[28] K. Chatterjee, W. Dvorák, M. Henzinger, and V. Loitzenbauer,
“Conditionally Optimal Algorithms for Generalized Büchi Games,”
in 41st International Symposium on Mathematical Foundations of
Computer Science (MFCS 2016), ser. Leibniz International Proceedings
in Informatics (LIPIcs), P. Faliszewski, A. Muscholl, and R. Niedermeier,
Eds., vol. 58. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016, pp. 25:1–25:15. [Online]. Available: https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.25

[29] M. E. Conway, “Design of a separable transition-diagram compiler,”
Commun. ACM, vol. 6, no. 7, p. 396–408, jul 1963. [Online]. Available:
https://doi.org/10.1145/366663.366704

[30] C. D. Marlin, Coroutines: A Programming Methodology, a Language
Design and an Implementation, ser. Lecture Notes in Computer
Science. Springer, 1980, vol. 95. [Online]. Available: https://doi.org/
10.1007/3-540-10256-6

[31] D. Harel, G. Katz, A. Marron, A. Sadon, and G. Weiss, “Executing
Scenario-Based Specification with Dynamic Generation of Rich Events,”
in Model-Driven Engineering and Software Development, S. Hammoudi,
L. F. Pires, and B. Selić, Eds. Cham: Springer International Publishing,
2020, pp. 246–274.

[32] E. R. Wete Poaka, J. Greenyer, T. Yaacov, D. Kudenko, and W. Nejdl,
“Streamlined Integration of GR(1) Synthesis and Reinforcement
Learning for Optimizing Critical Cyber-Physical Systems ,” Jul. 2025.
[Online]. Available: https://doi.org/10.5281/zenodo.16338649

[33] P. Gastin and D. Oddoux, “Fast ltl to büchi automata translation,” in
Computer Aided Verification, G. Berry, H. Comon, and A. Finkel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 53–65.

[34] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d.
Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel,

https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/3324884.3416557
https://doi.org/10.1007/s10270-021-00868-z
https://doi.org/10.1146/annurev-control-053018-023717
https://drops.dagstuhl.de/opus/volltexte/2020/12815
https://doi.org/10.1007/978-3-031-10161-8_8
https://doi.org/10.1145/2209249.2209270
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/2786805.2786824
https://journals.flvc.org/FLAIRS/article/view/130584
https://doi.org/10.1145/949344.949353
https://doi.org/10.1145/949344.949353
https://doi.org/10.1007/978-1-4613-8928-6_23
http://www.sciencedirect.com/science/article/pii/S0022000011000869
http://www.sciencedirect.com/science/article/pii/S0022000011000869
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.25
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.25
https://doi.org/10.1145/366663.366704
https://doi.org/10.1007/3-540-10256-6
https://doi.org/10.1007/3-540-10256-6
https://doi.org/10.5281/zenodo.16338649

R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen,
and O. G. Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

[35] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto,
and N. Dormann, “Stable Baselines3,” https://github.com/DLR-RM/
stable-baselines3, 2019.

[36] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[37] A. David, P. G. Jensen, K. G. Larsen, M. Mikučionis, and J. H.
Taankvist, “Uppaal stratego,” in Tools and Algorithms for the
Construction and Analysis of Systems, C. Baier and C. Tinelli, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 206–211.

[38] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem, “Shield
Synthesis for Reinforcement Learning,” in Leveraging Applications of
Formal Methods, Verification and Validation: Verification Principles,
T. Margaria and B. Steffen, Eds. Cham: Springer International
Publishing, 2020, pp. 290–306.

[39] M. Hasanbeig, A. Abate, and D. Kroening, “Cautious reinforcement
learning with logical constraints,” in Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent
Systems, ser. AAMAS ’20. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems, 2020, p. 483–491.

[40] E. Wete, J. Greenyer, D. Kudenko, and W. Nejdl, “Multi-Robot
Motion and Task Planning in Automotive Production Using Controller-
based Safe Reinforcement Learning,” in Proceedings of the 23rd
International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2024, Auckland, New Zealand, May 6-10, 2024,
M. Dastani, J. S. Sichman, N. Alechina, and V. Dignum, Eds. ACM,
2024, pp. 1928–1937. [Online]. Available: https://dl.acm.org/doi/10.
5555/3635637.3663056

[41] K. Dräger, V. Forejt, M. Kwiatkowska, D. Parker, and M. Ujma,
“Permissive controller synthesis for probabilistic systems,” in Tools and
Algorithms for the Construction and Analysis of Systems, E. Ábrahám
and K. Havelund, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 531–546.

[42] R. Giaquinta, R. Hoffmann, M. Ireland, A. Miller, and G. Norman,
“Strategy synthesis for autonomous agents using prism,” in NASA
Formal Methods, A. Dutle, C. Muñoz, and A. Narkawicz, Eds. Cham:
Springer International Publishing, 2018, pp. 220–236.

[43] R. Bloem, B. Könighofer, R. Könighofer, and C. Wang, “Shield
synthesis:,” in Tools and Algorithms for the Construction and Analysis
of Systems, C. Baier and C. Tinelli, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 533–548.

[44] B. Könighofer, M. Alshiekh, R. Bloem, L. Humphrey, R. Könighofer,
U. Topcu, and C. Wang, “Shield synthesis,” Formal Methods in System
Design, vol. 51, no. 2, pp. 332–361, Nov 2017. [Online]. Available:
https://doi.org/10.1007/s10703-017-0276-9

[45] H. Odriozola-Olalde, M. Zamalloa, and N. Arana-Arexolaleiba,
“Shielded reinforcement learning: A review of reactive methods for
safe learning,” in 2023 IEEE/SICE International Symposium on System
Integration (SII), 2023, pp. 1–8.

[46] B. Könighofer, J. Rudolf, A. Palmisano, M. Tappler, and R. Bloem,
“Online shielding for reinforcement learning,” Innovations in Systems
and Software Engineering, vol. 19, no. 4, pp. 379–394, December
2023. [Online]. Available: https://doi.org/10.1007/s11334-022-00480-4

[47] E. Wete, J. Greenyer, D. Kudenko, W. Nejdl, O. Flegel, and D. Eisner,
“A Tool for the Automation of Efficient Multi-Robot Choreography
Planning and Execution,” in Proceedings of the 25th International
Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, ser. MODELS ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 37–41. [Online].
Available: https://doi.org/10.1145/3550356.3559090

[48] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011,
pp. 585–591.

[49] T. Yaacov, A. Elyasaf, and G. Weiss, “Keeping behavioral programs
alive: Specifying and executing liveness requirements,” in 2024 IEEE
32nd International Requirements Engineering Conference (RE), 2024,
pp. 91–102.

[50] A. Ashrov and G. Katz, “Enhancing deep learning with scenario-based
override rules: A case study,” in Proceedings of the 11th International
Conference on Model-Based Software and Systems Engineering,
MODELSWARD 2023, Lisbon, Portugal, February 19-21, 2023, F. J. D.
Mayo, L. F. Pires, and E. Seidewitz, Eds. SCITEPRESS, 2023, pp. 253–
268. [Online]. Available: https://doi.org/10.5220/0011796600003402

[51] G. Amram, D. Ma’ayan, S. Maoz, O. Pistiner, and J. O. Ringert,
“Triggers for Reactive Synthesis Specifications,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE
Press, May 2023, pp. 729–741.

https://zenodo.org/record/8127025
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://dl.acm.org/doi/10.5555/3635637.3663056
https://dl.acm.org/doi/10.5555/3635637.3663056
https://doi.org/10.1007/s10703-017-0276-9
https://doi.org/10.1007/s11334-022-00480-4
https://doi.org/10.1145/3550356.3559090
https://doi.org/10.5220/0011796600003402

	Introduction
	Example Use Case
	Preliminaries
	Linear Temporal Logic
	Büchi Automaton
	Reactive Systems, GR(1), and Spectra
	Behavioral Programming
	BPpy: BP in Python

	Formal Reactive System Specification
	Mapping Spectra to BPpy
	Variables and Logical Operators
	Mapping Assumptions
	Initial Properties
	Invariant Properties
	Justice Properties

	Mapping Patterns
	Mapping Guarantees
	Mapping non-deterministic choices

	RL Integration with Gymnasium
	Evaluation Results
	Related Work
	Conclusion
	References

