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Abstract

To �nd a way to overcome the complexity of distributed reactive software
systems, I looked at "Behavioral Programming" (BP), which is a novel
programming paradigm that claims to make the development of software
easier in a natural and incremental way. My goal was to evaluate BP and
�nd out its strengths and weaknesses, by taking a look at �ve criteria: (1)
Incremental work �ow, (2) changeability and extensibility, (3) modularity
and readability, (4) performance and �nally (5) di�culty of use. I did
that by creating my own case study (the development of a tra�c simulation
with the Unity3D game engine and C-sharp as programming language) and
then discussing the impressions that I gathered during its development. My
results are the following: (1) BP allows for an incremental work �ow, as long
as the requirements are precise and complete. (2) BP makes software easily
changeable and extensible. (3) BP forces modular and readable code. (4) BP
has performance problems in larger systems but that can partly be solved
with the concept of "nodes". (5) To understand BP and use it e�ciently,
one might need to invest some time to fully understand its principles and
use them correctly.
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Chapter 1

Introduction

1.1 Problem

Nowadays computer systems are all around us. These ubiquitous systems
usually consist of many components, which themselves have several functions
and interact with other components. When a system's behavior emerges from
the interaction between several subsystems, we call it a distributed system.
Such systems may possess increased complexity and the programming of
such a system can become a di�cult task.

A conventional way to deal with this in software engineering is the
formulation of use cases, which the software is then build from. The software
engineer would choose a use case and try to implement it. Usually object
oriented programming (OOP) is used to divide the software in modules, so
the software engineer would identify the necessary modules that are required
for a certain use case and implement them incrementally one after another.
Using that approach, a problem may arise: When a second use case has to
be implemented, but that use case a�ects the functionality of the �rst use
case, or vice versa. Then the software engineer can no longer focus solely on
his second use case, but instead has to look at the modules of the �rst use
case again. He then needs to �gure out a solution, so that both use cases are
implemented properly. Exactly this going back and forth between existing
and new code disturbs the incremental work �ow, causes complexity and thus
might be time consuming and make room for errors. There is no pattern for
the software engineer to follow in OOP to easily implement the con�icting
use cases correctly, but instead he has to manually work it out and try to
�nd a solution. Complex behavior is even de�ned as several simple behaviors
that con�ict by Jackson[9], which perfectly matches the situation described
above. And especially in distributed systems, interwoven and con�icting
behavior may exist in many parts of the system, so the software engineer
constantly faces this problem.
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2 CHAPTER 1. INTRODUCTION

1.2 Approach

A common approach in software engineering to deal with complexity is
"divide and conquer". This means that you decompose your problem into
several smaller ones, that are then more easily manageable, as stated by
Peña et al.[11]. Jackson[9] however emphasizes that decomposition is a
great tool to decrease complexity, but that the software engineer might miss
interactions between decomposed parts of a software system by doing so.
He calls this phenomenon "oversimpli�cation". So if you take a look back
at conventional software engineering, one could argue that use-cases and
OOP provide some sort of decomposition of the big problem, but they both
don't provide a nice way to model and take care of the joint behavior of
decomposed parts.

That's why I want to take a look at and evaluate "Behavioral Pro-
gramming", which is a programming paradigm that aims at encapsulating
system behavior to allow for incremental development, one functionality at
a time, to lower the need to go back to already implemented code. I want
to �nd out if this programming paradigm decreases the complexity when
implementing a distributed system, by investigating it's capabilities for (1)
incremental development, (2) changeability and extensibility, (3) modularity
and readability. In addition I want to take a look at (4) performance, as well
as how di�cult it is to for a novice to (5) understand, setup and use BP in
a software project and what kind of problems my arise.

To �nd this out, my approach was to create use cases for a simple
tra�c simulation game and then implemented these using "Behavioral
Programming" and the Unity3D engine. A tra�c simulation game suits
the �eld of application of distributed systems well, because on the one hand
there are several objects (cars, pedestrians, tra�c lights) that have their own
behavior, which is then combined, forming the system's total behavior. On
the other hand I took an element from computer games: The (human) player
acts as a god with a top-down perspective and can interfere by manipulating
the di�erent objects and observe the system's reaction, to fully meet the
requirements of a distributed and reactive system.

I chose this approach because it creates the case of having several use
cases that a�ect each other. During the process of implementing these use
cases I documented my �ndings and impressions to later evaluate the quality
of the "Behavioral Programming" paradigm for reactive distributed systems
by using the criteria (1) to (5) mentioned above.

1.3 Goal

The goal of this bachelor thesis is to evaluate the "Behavioral Programming"
paradigm. Does it deliver what it promises? Does it allow for incremental
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development and thus decrease complexity? Is it easier to make changes
to or expand existing functionality, when using this paradigm? Does this
paradigm lead to modular code that is easy to read?

1.4 Structure

This bachelor thesis has the following structure. In chapter 2 I explain the
necessary foundations, especially how BP works and how it is integrated
within Unity3D. In chapter 3 I present my case study (the tra�c simulation)
and showcase how i built it. Chapter 4 examines strengths and weaknesses
of BP, by evaluating it on the basis of �ve criteria. In chapter 5 related work
is discussed and compared to my work. Chapter 6 summarizes the most
important �ndings and insights.

1.5 Results

The following results have been found:

1. BP allows for an incremental work �ow, as long as the requirements
are precise and complete.

2. BP makes software easily changeable and extensible.

3. BP forces modular and readable code.

4. BP has performance problems in larger systems but that can partly be
solved with the concept of "nodes".

5. To understand BP and use it e�ciently, one might need to invest some
time to fully understand its principles and use them correctly.
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Chapter 2

Foundations

2.1 Overview

Since my goal is to evaluate Behavioral Programming (BP), I will �rst
describe what BP is, how it works and explain its components in detail.
Also I will explain what Unity3D is and how it has been used in conjunction
with BP to create the tra�c simulation game.

2.2 Behavioral Programming

BP is a programming paradigm, a special approach and technique for
software development with the goal to allow for incremental development in
a natural way. In addition to conventional OOP components like classes,
software designed after this paradigm also contains Behavioral Threads

(BTs), each of which represents an independent scenario that the system
should or shouldn't follow. For example, if you look at a game, each
game rule would be programmed separately and independently in a BT,
with little or no awareness of other BTs. A common execution mechanism,
the execution engine, interlaces these behaviors at runtime, choosing events
based on the demand and constraints of each BT, yielding an integrated
system behavior. BP currently exists for several programming languages,
including Java, Javascript, C++, Erlang and C sharp[8]. A more detailed
explanation of BTs, events and the execution engine is given in the following
sub chapters.

2.2.1 Behavioral Threads

A BT is a scenario that the system should or shouldn't follow. It can
consist of usual program code but can also request, wait for or prevent
events. Whenever one of these three event actions occurs, a synchronization
point is reached. That means that the system executes all other BTs �rst,

5
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until they hit a synchronization point themselves. When all BTs are at a
synchronization point, the system chooses an Event that is requested and not
prevented, and executes it. Now all BTs that requested the selected event, or
waited for that event, will execute past their synchronization point until they
reach their next synchronization point. All other BTs remain at their current
state, until an Event is chosen that a�ects their synchronization point. BTs
can consist of repeating or endless behavior (by putting their code in a "for"
or "while" loop respectively), but they can also be �nite.

2.2.2 Events

Events are the second core component of BP. In BP events can be requested,
waited for or prevented. When all BTs reach a synchronization point, the
execution engine looks for all events that are requested and at the same
time not prevented by any BT. However, there might be more than one
eligible event, but only one event can be executed at a time. In this case
a mechanism must be chosen to select one event. This can either be done
randomly, leading to non deterministic system behavior, or events may hold
a priority value and the highest or lowest priority event is chosen. It is
important to note that if you choose to go with the priority based approach,
all existing events may never have the same priority value, or else you create
non deterministic behavior again.

Whenever an event is chosen for execution, its run() method is executed.
The run() method may contain program code that is then executed or may
print console messages, but it doesn't have to. An event can always act as
a dummy, having no executable code itself, but instead being there just to
advance other BTs past their synchronization point.

Internally BP often has to compare events, for example to determine if a
requested event is the same event as a prevented event. When you create a
new event, you create a new class, thus giving it its own type, but it always
inherits from the base "Event" class. You can add new variables to your
own event if you need. Now when two events are compared, �rst its type is
checked. If the type is the same, all variables for both events are checked and
must contain the same value, in order to count as equal. This mechanism is
great if you have several objects of the same type, for example cars in a tra�c
simulation, but you want the event to only a�ect one of them. You do not
want to create a new event for each car that exists in your simulation. What
you could do instead is add a variable "ID" to your event which connects the
event with the car and now only events with the same type and the same
"ID" count as the same. That way you can for example prevent an event
for one car, but still allow that event for all other cars. From now on this
technique will be called parametrization of events.
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2.2.3 Execution Engine

Since software that is designed after the BP paradigm consists of several
individual BTs, there needs to be a mechanism that interlaces all BTs and
creates the system's total behavior. This is done in the so called execution

engine (EE). The EE �rst looks at all BTs and �nds all possible events.
That means to go through all BTs, �nd all requested events and then check
if these requested events are blocked by any other BT. All non-prevented and
therefore eligible events are put in a possible events list. The next step is to
choose one of the events of that list (this process has already been explained
in the events section). Once an event is chosen, it will be executed. This
will �re the event's run() method as well as advance all BTs that waited for
or requested that event to their next synchronization point.

As I explained earlier, the EE takes all BTs and then starts its algorithm.
The BTs are passed to the EE as a list. So if you want to add a new BT
to your program, you have to add that BT to the list before the list gets
handed over to the EE.

It is important to note that the computations done by the EE might be
quite costly performance wise when you have a lot of BTs and events. In
chapter 3 I will take a closer look at the performance of BP.
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2.2.4 A Simple Example

To illustrate the how BP can be used, lets take a look at the two BTs shown
below in the listing A.1 and walk through them step by step.

Listing 2.1: Pseudocode of two Behavioral Threads

1 public class BT_Car_Drive : BP.BThread {

2 public void run()

3 {

4 while(true)

5 {

6 sync{ Requests = EV_Car_DriveRequest }

7 Car.driveForward ()

8 sync{ Waits = EV_NextFrame }

9 }

10 }

11 }

12

13 public class BT_Car_KeepDistance : BP.BThread {

14 public void run()

15 {

16 while(true)

17 {

18 if(Car.AnotherCarIsTooClose ()){

19 sync{

20 Prevents = EV_Car_DriveRequest

21 Waits = EV_NextFrame

22 }

23 }else{

24 sync{ Waits = EV_NextFrame }

25 }

26 }

27 }

28 }

The �rst BT (BT_Car_Drive) has his actions wrapped in a while(true)
loop, which means that the actions inside will be repeated in�nitely.
The �rst action is a synchronization point in which it requests the event
EV_Car_DriveRequest. If that requested event is chosen for execution by
the execution engine, the BT will advance to its second action, which calls
the driveForward() method on the Car class, which actually moves the car
forward a short distance. This is no synchronization point, so no matter
what, the BT will immediately advance to its third action, in which it waits
for the event EV_NextFrame. Only when that event is executed, the BT
will continue and start with its �rst action again.

The second BT (BT_Car_KeepDistance) also repeats in�nitely. First,
in its "if" statement, it calls the method AnotherCarIsTooClose() on the Car
class to check if the minimum distance to another car is violated. If that's
the case it prevents the EV_Car_DriveRequest, which a�ects the �rst BT,
because there exactly this event is requested. The result is that the �rst BT
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will not pass its �rst synchronization point and thus the car will not move,
if the minimum distance to another car is violated. Also, it waits for the
event EV_NextFrame, because you only have to prevent an event once per
frame. If no minimum distance is violated, the BT just waits for the event
EV_NextFrame, then begins from the start again. In that case, the �rst BT
can successfully pass its �rst synchronization point and then move the car
forward.

2.3 Unity3D and the integration of BP

My goal was to evaluate BP by creating a tra�c simulation game. For that
I needed an engine that supports 3D and allows for the integration of BP.
Luckily, Unity3D supports programming in C sharp and BP was available
in C sharp. Unity3D (http://unity3d.com) is a �exible 3D engine that can
be used for all sorts of games and simulations and its basic version if free.

When integrating BP into Unity3D, I had some obstacles to overcome.
Unity3D's architecture is a frame based one. Scripts in Unity3D have an
update() method that is called by the engine every rendered frame. In that
method you do all the calculations that need to be done (for example moving
a car a tiny bit forward each frame in a tra�c simulation). This gets repeated
over and over every rendered frame. These rendered frames are also what
you see on your monitor when executing your game or simulation. Now the
questions was how to integrate BP's Execution Engine into this architecture.
I chose to have one global "GameLogic" class, that runs the execution engine
in its update() method, hence once every rendered frame. This way the EE
and Unity3D are synchronized. Each frame the EE advances all BTs as
far as possible. When all BTs are at a synchronization point and no more
conditions to advance one of the BTs are met, the EE stops and "tells"
Unity3D that its done with its calculation and that Unity3D can advance to
its next frame. Precisely this transition from one frame to the next, is also
the opportunity to add new BTs to the EE. For example you could check for
user input and add new BTs depending on the input.
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Figure 2.1 shows a sequence chart which illustrates how the execution
engine is integrated in Unity3D.

Figure 2.1: Implementation of the execution engine in Unity3D

As you can see, the �rst thing that happens is the call of the update()
method, which is automatically done by the Unity3D engine. The next
step is the mergeBThreads() method, which merges all new BTs that have
been newly created, for example by user input, with all other BTs that are
already existing. Now that all BTs are combined in one list, that list is
passed to the execution engine in the runAll() method, and it can start its
computation. By chosing this kind of implementation, one problem occured:
When you had a BT that had repeating behavior and no BT prevented
its requested events, it would run endlessly. The EE would execute that
BT over and over again, so the EE would never �nish and would never
"tell" Unity that it's done with its execution. As a result Unity3D would
never �nish calculating that frame and the simulation would freeze. Because
of this I created a "next frame" mechanism. That means that repeating
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behavior may repeat, but only once per frame. Once it had its code executed,
it must wait for the event EV_NextFrame to be allowed to be executed
again. The EV_NextFrame event is always added once per frame in the
mergeBThreads() method. This way the EE will not freeze on repeating
behavior. If you take a look back at the code of the simple example A.1, you
can see how I used the "next_frame" mechanism to make the car only move
once per frame. The "next frame" mechanism I built for my implementation
is similar to the "super-step" concept introduced by Harel et al [8].
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Chapter 3

Case study: Tra�c Simulation

In this chapter I will describe the tra�c simulation that I developed. I
will start with its basic functionality, then head towards the use cases I
formulated and �nally showcase the implementation including its Behavioral
Threads.

3.1 Overview of functionality

The tra�c simulation I created exists of a simple squarish road system. Cars
automatically follow that road system in a circular fashion and they can be
on either side of the road. Also there is a tra�c light positioned at one of the
roads which stops approaching cars if it shows red lights. The "player" can
change the state of the tra�c light, transitioning the red lights to green and
vice versa. In addition there are pedestrians that automatically approach the
tra�c light, and if it shows a red light for the cars, the pedestrians will cross
the road. The "player" can spawn additional pedestrians and additional cars
via keyboard inputs. A screenshot of the application can be seen in �gure
3.1 . Along the way of �nding a concise example for my thesis I developed
some further functionality (for example overtaking mechanisms, more BTs
are shown in the appendix), but for the sake of keeping the following chapters
more understandable, I will focus on a few core behaviors, that in my opinion
highlight the application of BP well.

13



14 CHAPTER 3. CASE STUDY: TRAFFIC SIMULATION

Figure 3.1: The tra�c simulation with a tra�c light, vehicles and a
pedestrian crossing the street

3.2 Use Cases

Derived from the functionality described above, I formulated the following
use cases:

Use Case 1: Cars can be spawned on the road system and they
automatically follow it by "driving" forward with randomized speed.

Use Case 2: If a car detects another car in front of itself, it should
always keep a certain distance instead of crashing into it.

Use Case 3: Pedestrians can be spawned via keyboard inputs which
approach the tra�c light and, if it shows red lights for the cars, cross the
street.

Use Case 4: A tra�c light is placed on one of the roads that stops
approaching cars if its red lights are turned on, blocks pedestrians from
crossing the street if its green lights are turned on and blocks cars and
pedestrians if its orange lights are on. The player can toggle the tra�c
light's color from green to red via keyboard input and vice versa. Each
transition will take 3 seconds, indicated by showing the orange light for 3
seconds.
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3.3 Implementation using Behavioral Program-

ming

I tried to incrementally build the software described in the use cases above,
implementing one use case after another. I will not go into detail of how
i setup the 3D environment of the simulation and how i connected the 3D
objects with my code and classes in Unity3D, because the focus of this thesis
is to evaluate the potential of BP, not to explain how Unity3D works. I also
have to note that I have created a "GameLogic" class that keeps track of
all dynamically created objects like cars and pedestrians, checks for player
input, and runs the EE once each frame rendered by Unity, but I will not
explain further details of how I did this and focus on the use cases instead.

The implementation of use case 1 and 2 has already been shown partially
in the simple example A.1 in chapter 2, but was missing some extensions
regarding parametrization, thus I will explain it in more detail once again.
For use case 1 I created the class "Car" which has the public method
driveForward() that can be called from anywhere outside the class, moving
the car forward a small distance. This class also automatically handles the
pathing of the car to stay on the road at all times and drive on the correct
side of the road. I then created a BT called "BT_Car_Drive" which in its
�rst step requests the event "EV_Car_DriveRequest". This BT stores the
ID of the corresponding car as an integer, to identify the correct car this
BT belongs to (there might be several cars on the road and you want to be
able to control the behavior of each car individually). This ID is also passed
to the Event, for the same reasons. Whenever the EE selects that event
for execution, the BT passes its synchronization point and driveForward() is
called, which in fact moves the car forward in the simulation. After that, the
BT waits for the event "EV_Next_Frame", because we only want the car to
drive forward once per frame. The "next frame" concept has already been
described in the foundations chapter and will not be explained in detail
anymore. When the event "EV_Next_Frame" happens, the BT repeats
itself, starting with a request for the event "EV_Car_DriveRequest".
Because I do not want the car to stop, the steps of this behavior are nested
in a "while(true)" loop.

For use case 2 I implemented the method carInFrontOfThis() in the
"Car" class, which checks if the minimum distance to any other car is
on the same side of the road is violated. The BT created for this use
case, called "BT_KeepDistance", then simply calls this function and if a
violation occurs, simply prevents the event "EV_Car_DriveRequest", and
if no violation occurs it just waits for the "next frame". It is important to
note that this BT also stores the ID of a car, because you want to block
the event "EV_Car_DriveRequest" only for the car where the violation
happened. Because I never want this behavior to stop, it is also nested in a
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"while(true)" loop.
For use case 3 I created the class "Pedestrian" which automatically

lets pedestrians walk towards the tra�c light and then stop right in front
of it. That class also has the method crossTheStreet() which orders the
pedestrian to cross the street, but only if it is already standing right beside
the tra�c light. I also created the BT "BT_CrossTra�cLight" which
simply requests the event "EV_CrossTra�cLight". If that event is executed,
crossTheStreet() is called on all pedestrians, making them cross the street,
if they are close to the tra�c light.

Use case 4 is an interesting one, because now the tra�c light comes
into action, which a�ects both cars and pedestrians. I created the class
"Tra�cLight" which stores the state of the tra�c light (possible colors
of the light shown to the cars: red, orange, green). That class also has
the methods turnRed() and turnGreen() which cause the orange light to
show for 3 seconds and then show the desired light. In addition, that class
holds a list of all cars that are close to the tra�c light and updates that
list regularly. This list is needed to generate events to later prevent cars
from driving forward when being close to the tra�c light and the light
being "red". Then I created the BT "BT_Tra�cLightToggle" that handles
the player input by waiting for the event "EV_Tra�cLightToggleRequest"
which is created when a certain keyboard key is pressed. Once that
event is executed, turnRed() is called. Then, again, the BT waits for
the toggle event and once that is triggered, turnGreen() is called. These
steps are repeated in�nitely. But here an additional BT is required:
One that blocks cars and pedestrians depending on the tra�c light's
state. The BT "BT_Tra�cLightBlockObjects" simply consists of 3 if
statements that check for red, green or orange light and then prevents
the events "DriveEventsOfAllCloseCars", "EV_CrossTra�cLight" or both
respectively. This BT also repeats in�nitely.

This completes the basic functionality of the tra�c simulation. I later
added more use cases to illustrate certain characteristics of BP, but these
will described in the following chapter (Evaluation).



Chapter 4

Evaluation

In this chapter I will evaluate BP on the basis of the �ve criteria mentioned
in the introduction. Each following subsection will evaluate one criterion.

4.1 Incrementality

My impression is that BP allows for a great incremental work �ow. To
support this theory I want to take a look at the implementation of use case
4 of the previous chapter. When implementing that use case, I had to create
the following:

• the new base class "Tra�cLight" plus some methods for that class

• a new BT to toggle the tra�c light on user input

• a new BT that stops cars and/or pedestrians

At no point I had to go back to a di�erent base class other then the
newly created "Tra�cLight" class. The only thing that I had to know from
previous implementations were the names of the events that the cars and
pedestrians were requesting, so I could prevent these events.

It is important to note though that you can end up in situations where a
previously implemented BT does not provide as much control as you need.
One example where I faced this problem was when I wanted to make cars
overtake other cars as illustrated in �gure 4.1. This example is described in
more detail in the following "Changeability and Extensibility" sub chapter,
but the general problem was that I only wanted to prevent only the �rst
step of the overtaking process, instead of the whole process. This way a car
that started the overtaking process will always �nish it and not stop in the
middle of the process, possibly blocking the opposing side of the road. What
I had to do then was to go back to an already implemented BT and change
it according to my new needs. Also I had to make changes to the Car class,
to make the new requirements work.

17
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As a result, at �rst glance I would argue that situations may arise where
the incremental work �ow might be hindered. But looked at from a di�erent
perspective, I would also claim that in this case the incremental work �ow was
hindered because the requirements were imprecise and uncompleted. First I
just thought of the overtaking process as one simple action, and only later I
realized that there was more to it and that I needed to divide it in several
di�erent phases. Had I spent more time thinking about the requirements
from the outset, I might have avoided the problem of lacking control later in
the development process.

Figure 4.1: Vehicles overtaking a broken (red) vehicle, creating a dangerous
situation by driving on the opposing side of the road

4.2 Changeability and Extensibility

First I want to talk about why changeability and extensibility is important in
software engineering. On the one hand, in most cases, you want to make your
software changeable and extensible so that standard maintenance procedures
or additional customer demands can be met with as little e�ort as possible.
In fact, Bohner et al.[1] state that the "change tolerance" of a software system
is a factor that can decrease complexity and make development easier for the
software engineers in the long run.

On the other hand, the phenomenon of "underspeci�cation" must
be considered, which means that in software engineering a requirements
document is never totally complete and new requirements emerge in the
process of building the software, as described by Harel[4]. So this means
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that during software development, your software might have to change or
be adjusted to meet the new requirements that came into existence. So if
the software allows for easier changeability, the software engineer faces less
complexity.

I think that BP makes changeability and extensibility relatively easy.
On the one hand you can easily modify existing software by removing
or interchanging BTs, without any need to look at a base class. When
initializing and spawning a car, I could for example not create the BT
"BT_KeepDistance" for that car, which leads to the car not caring for the
minimum distance to other cars. This means I would have to change one
line of code to change the behavior of that car, no further adjustments would
have to be made.

On the other hand it's just as easy to extend existing software, just by
adding new BTs. For example, I later added the ability for the player to click
on a car to make it stop and turn its warning signs on, signaling to other cars
that this car is blocking the road. I just implemented this by creating a new
BT that blocks the clicked car's event "EV_Car_DriveRequest". However,
this was a really simple extension. So I tried to create another more complex
behavior. My idea was to make cars, that wait behind the stopped car
because of the "keep distance" behavior, overtake that car instead of waiting
endlessly. To achieve that behavior, I created a new BT "BT_Overtaking".
To make this more complex behavior work, I also had to go back to the
"Car" class and �rst add a new variable to track if a car got stopped
by the player (a simple boolean is su�cient). Second, in the same class,
I created the method carInfrontOfThisHasWarningSigns() which checks if
there is a car blocking the road we are on. Third, the "Car" class needed a
method overtake() that actually moves the overtaking car past the blocked
car, basically in three steps: step out, drive forward and �nally step back
in. Now, with the needed functionality implemented to the base class, I
could �nish the BT: It �rst checks for a car blocking the road. If one is
found it requests the new event "EV_Overtake" while preventing the event
"EV_Car_DriveRequest", because we don't want the car to drive forward
and crash into the car in front of it while overtaking. When the requested
event "EV_Overtake" gets executed, overtake() is called and the process of
overtaking begins.

With this new behavior, some simulation related problems did arise: For
example, a car that overtakes a stopped car might crash into a car on the
opposing side of the street. One could implement functionality that checks
if there are cars coming on the opposing lane, and then block the event
"EV_Overtake" in case that happens. Also the act of overtaking could be
divided into several phases, each with its own event, so that you can control
precisely which action of the overtaking process you want to request or
prevent. However, this extension won't enrich this example (I implemented
this advanced behavior and the according BTs can be seen in the appendix).
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Instead I want to focus on what this example showed to me. First, I realized
that adding new behavior doesn't always simply mean adding a new BT. As
described above, I had to back to the "Car" class several times and add new
functions and state variables. This was nothing that could have just been
implemented in the BT itself, so the "Car" class had to be revisited, I saw
no way to avoid that. But what makes BP so good is the control you have

over already implemented behavior. Simply being able to prevent the event
"EV_Car_DriveRequest" during the process of overtaking with just one line
of code is really elegant. Also, for example, I later found overtaking, when
being close to the tra�c light, lead to weird tra�c situations, so I decided
that the "Tra�cLight" class just prevents the event "EV_Overtake" for all
cars that are close to it. The logic of the process of overtaking doesn't have
to be touched at all, the simple prevention of the event "EV_Overtake" was
su�cient.

To see this in a more abstract way, you can basically create any complex
behavior and you just add a "marker" to it (the event it requests is the
marker). And this marker event lets you prevent that complex behavior
from anywhere with just one simple line of code.

4.3 Modularity and Readability

I put modularity and readability together in one section, because I think
one great advantage of modularity is that it creates nice readability, and
readability leads to easier understanding of software, especially if shown to
people not familiar with the software. Because you usually create new BTs
when adding new functionality to your software, you automatically end up
with modular software. Also I �nd the modularity induced by the BTs quite
feasible. Often the name of the BT alone gives insight in what it does (in
my implementation, the names of the BTs are often close to the actual use
case). Then, when looking into the BT itself, you can see what it does and
in which order. Even if you don't have a clue how some behavior works in
detail, you can control it (preventing the events it requests or waits for).
Compared to software created conventionally with just OOP standards, you
often have classes that have several functions and you sometimes don't know
where to start when trying to understand what it does. BP on the other
hand provides you with a place to start, by letting you look at the BTs,
which summarize the features of the software quite well in my opinion.

Maybe it's appropriate to see BTs as a connector between complex low-
level functionality and high-level descriptions of what the software does.
In fact, the BTs I created never possessed complex logic themselves (the
complexity never exceeded a few simple "if" statements), while the really
complex calculations of the tra�c simulation were placed in the base classes
("Car", "Pedestrian" and "Tra�cLight").
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4.4 Performance

I think one problem of BP lies in its capability to scale in larger systems. If
you take a look at its execution engine, each iteration it does the following:
(1) Go through all BTs, (2) for each requested events in these BTs, (3) go
through all BTs to check if that event is prevented. If your system has
n BTs and, for simplicity reasons, each BT always requests one event (it
could theoretically request zero, but also an in�nite amount of events), this
would lead to a run-time of n2. I benchmarked my simulation by periodically
spawning more cars (each Car had 4 BTs at that point of time) and in fact,
I could discover a quadratic increase in time required to calculate one frame,
as seen in �gure 4.2. Once I had more than 100 cars simultaneously driving
down the roads, the frame rate dropped severely (less than 1 FPS).

Figure 4.2: Time required to render one frame as a funtion of the number of
Behavioral Threads

One possible solution to this problem is the creation of nodes, as proposed
in Harel et al. [8]. This means that only behavior that needs to synchronize
with each other is placed in the same node, decreasing the amount of
iterations the "for loop" in (1) and (3) has to go through. Splitting your
BTs in two equally sized groups and then running the EE individually for

each node would lead to (
n
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2
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2
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2n
2, bisecting the amount of

iterations necessary. However the question is, if you can always separate
your behavior in di�erent nodes. In some cases that might work, but maybe
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sometimes that is not possible if they a�ect each other.

4.5 Di�culty and Learning Curve

I added this section because I wanted to share my impressions regarding
the di�culty of learning and using BP. First of all to be clear, I was totally
new to BP. During the work on my thesis I had roughly three months to
understand and learn BP, and then integrate it in Unity3D to make my
tra�c simulation. At the beginning there was a lot to learn: How does
the execution engine work, how often and when should it be run, when are
events considered equal, when should super-steps happen, how to include
user input, which event gets selected and executed �rst, how to connect BTs
and basic classes, how can I make one car stop but not all of them, just to
name some questions I stumbled upon in my "learning" phase. At �rst, this
seemed a lot and almost overwhelming, and I also had the impression that
BP creates a lot of overhead compared to conventional OOP: You don't only
have to create your basic classes, but you also have to often create new classes
for events and BTs when you implement something new. It was only after
a few weeks of continuous engagement with the matter, that I learned to
appreciate its power and see its advantages rather then seeing the negative
aspects a novice might stumble upon. My conclusion would be that �rst,
one needs to invest some time to get comfortable with BP and second, the
elegance, control and modularity you gain when using BP also has its price
by creating some overhead in the work �ow.

In a recent case study by Harel et al.[5] it has also been highlighted that
in order to make BP work in a large real-world system, some extensions had
to be made. Among other things they mentioned parameterized events and
the dynamic creation of threads, which are two features that I also used in
my own case study. On the one hand this shows that BP is very �exible,
and thus can be adjusted to meet your project's needs. On the other hand
this might indicate that maybe BP could bene�t from further improvements
to make it more easily applicable to real-world systems and to be more
accessible for novices.
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Related Work

An early attempt to decrease complexity in distributed reactive systems
using scenarios of behavior is described in Harel et al.[6]. Here the idea is to
not think in terms of individual objects and their states, but rather in terms
of a typical scenario that could happen within a system. This is similar to the
Behavioral Threads of BP, where one BT also describes one certain behavior
of the system. They claim that this approach makes software development
much more natural. Also, they introduce the idea of scenarios that must,
may or may not happen, which has parallels to the concept of BP with
its requesting, waiting and preventing of events. When the scenario-based
behaviors were de�ned, they used a tool called the Play-Engine to play in

these scenarios using live sequence charts and later play them out.

Another attempt using live sequence charts, this time in conjunction with
actual behavioral threads, implemented in Java (called BPJ), is described in
Harel et al.[7]. Here the concepts of requesting, waiting and preventing events
are fully developed. Also, a coordination mechanism has been designed
which synchronizes and interlaces the behavioral threads, yielding composite,
integrated system behavior, which is similar to the C-sharp implementation
that I used for my work.

Behavioral Programming as a novel and language independent program-
ming paradigm, is nicely described and explained in Harel et al.[8]. Here, its
functionality is shown in great detail. They also demonstrate its capabilities
by explaining the incremental development of a computer game (the game
"Tic Tac Toe"), much like I did in my work. They conclude that more
research and projects using BP must be done to further evaluate its strengths
and weaknesses. In addition, they propose that behavioral programming
might be well suited for feature-oriented software, where customization is
important.

This leads to the work of Kindler et al.[10], which takes a look at
aspect-oriented programming, which aims at extending basic software with
so called aspects. These aspects are programmed individually �rst and

23
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later interactions and crosscutting behavior is modeled using automata.
They also use events to synchronize di�erent aspects, which is similar to
the "synchronization point" mechanism of BP. One core bene�t of aspect
oriented is the �exibility of the developed software: Adding and removing
parts (aspects) of the software is made easy and is possible without touching
other existing parts of software. This bene�t can also be found in BP, which
also makes possible �exible software, by simply allowing the removal and
addition of BTs, without having to adjust other parts of the software. One
di�erence to mention though is that aspect-oriented programming focuses
more on the implementation of individual classes, whereas BP focuses more
on implementing scenarios of behavior. For a nice overview and further
reading of aspect oriented concepts and technologies see Brichau et al. [2]
and Chitchyan et al. [3].
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Conclusion

6.1 Summary

In this thesis I explained how BP functions and then used it to develop a
tra�c simulation, in which cars and pedestrians act autonomously, while a
human "player" can interfere and manipulate them. Afterwards I evaluated
BP, taking the impressions gathered during the development, using �ve
criteria: (1) Incremental work �ow, (2) changeability and extensibility, (3)
modularity and readability, (4) performance and �nally (5) di�culty of use.
The results in a short are:

1. BP allows for an incremental work �ow, as long as the requirements
are precise and complete.

2. BP makes software easily changeable and extensible.

3. BP forces modular and readable code.

4. BP has performance problems in larger systems but that can partly be
solved with the concept of "nodes".

5. To understand BP and use it e�ciently, one might need to invest some
time to fully understand its principles and use them correctly.

6.2 Outlook

In my opinion two problems regarding BP aren't fully solved and should be
further investigated: (1) Can the performance problem be solved in really
big and computationally intensive software systems? The concept of "nodes"
is proposed as a solution, but does this help enough and in every software
system? And (2), I personally felt that BP was not perfectly "ready to use".
There were some problems I had to �nd solutions myself, and this didn't
always feel easy. So my questions would be if there is a way to improve the
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framework, so that some common problems are already solved. This would
especially improve the accessibility for novice users in my opinion.



Appendix A

Ein Anhang

Below you can see the source code of all my Behavioral Threads created
during the development of my tra�c simulation.

A.0.1 Behavioral Threads

Listing A.1: Behavioral Threads source code

1 public class BT_Car_Drive : BP.BThread {

2

3 int carID;

4

5 public BT_Car_Drive(int car_id ){

6 carID = car_id;

7 }

8

9 public override IEnumerable <BP.RWB > run()

10 {

11 while(true)

12 {

13 Car car = GameLogic.cars.Find (x => x.carID ==this.carID);

14 yield return new BP.RWB {

15 Requests = new List <BP.Events.Event >() {

16 new EV_Car_DriveRequest(this.carID )}};

17 car.driveForward ();

18 yield return new BP.RWB {

19 Waits = new List <BP.Events.Event >() { new EV_NextFrame ()}};

20 }

21 }

22 }

23

24 public class BT_KeepDistance : BP.BThread {

25

26 int carID;

27

28 public BT_KeepDistance(int car_id ){

29 carID = car_id;

30 }

27
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31

32 public override IEnumerable <BP.RWB > run()

33 {

34 while(true)

35 {

36 Car car = GameLogic.cars.Find (x => x.carID ==carID);

37 if(car!= null && car.carInfrontOfThis ()){

38 yield return new BP.RWB {

39 Waits = new List <BP.Events.Event >() { new EV_NextFrame ()},

40 Prevents = new List <BP.Events.Event >() {

41 new EV_Car_DriveRequest(carID )}};

42 }else{

43 yield return new BP.RWB {

44 Waits = new List <BP.Events.Event >() { new EV_NextFrame ()}};

45 }

46 }

47 }

48 }

49

50 public class BT_Overtaking : BP.BThread {

51

52 int carID;

53

54 public BT_Overtaking(int car_id ){

55 carID = car_id;

56 }

57

58 public override IEnumerable <BP.RWB > run()

59 {

60 while(true){

61 Car car = GameLogic.cars.Find (x => x.carID ==carID);

62 if((car.carInfrontOfThisHasWarningSigns () ||

63 car.ueberholPhase !=0) &&

64 !car.inactive ){

65 if(car.ueberholPhase ==1) yield return new BP.RWB {

66 Requests = new List <BP.Events.Event >() {

67 new EV_StepOut(carID)},

68 Prevents = new List <BP.Events.Event >() {

69 new EV_Car_DriveRequest(carID )}};

70 if(car.ueberholPhase !=1) yield return new BP.RWB {

71 Requests = new List <BP.Events.Event >() {

72 new EV_Overtake(carID)},

73 Prevents = new List <BP.Events.Event >() {

74 new EV_Car_DriveRequest(carID )}};

75 car.overtake ();

76 yield return new BP.RWB {

77 Waits = new List <BP.Events.Event >() {

78 new EV_NextFrame ()},

79 Prevents = new List <BP.Events.Event >() {

80 new EV_Car_DriveRequest(carID )}};

81 }else{

82 yield return new BP.RWB {

83 Waits = new List <BP.Events.Event >() {

84 new EV_NextFrame ()}};
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85 }

86 }

87 }

88 }

89

90 public class BT_Overtaking_SmartWarning : BP.BThread {

91

92 int carID;

93 float safetyDistance =2200f;

94

95 public BT_Overtaking_SmartWarning(int car_id ){

96 carID = car_id;

97 }

98

99 public override IEnumerable <BP.RWB > run()

100 {

101 while(true){

102 Car car = GameLogic.cars.Find (x => x.carID ==carID);

103 bool uberholenIsDangerous=false;

104 foreach (Car other in GameLogic.cars){

105 if(car.currentSide != other.currentSide &&

106 car.carIsInfront(other) &&

107 Vector3.SqrMagnitude(car.transform.position -

108 other.transform.position)<safetyDistance ){

109 uberholenIsDangerous=true;

110 }

111 }

112 if(uberholenIsDangerous) {

113 yield return new BP.RWB {

114 Waits = new List <BP.Events.Event >() {

115 new EV_NextFrame ()},

116 Prevents = new List <BP.Events.Event >() {

117 new EV_StepOut(carID )}};

118 }else{

119 yield return new BP.RWB {

120 Waits = new List <BP.Events.Event >() {

121 new EV_NextFrame ()}};

122 }

123 }

124 }

125 }

126

127 public class BT_TrafficLightToggle : BP.BThread {

128

129

130 public BT_TrafficLightToggle (){

131

132 }

133

134 public override IEnumerable <BP.RWB > run()

135 {

136 while(true)

137 {

138 yield return new BP.RWB {
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139 Waits = new List <BP.Events.Event >() {

140 new EV_TrafficLightToggleRequest ()} };

141 TrafficLight.turnRed ();

142 yield return new BP.RWB {

143 Waits = new List <BP.Events.Event >() {

144 new EV_TrafficLightToggleRequest ()}};

145 TrafficLight.turnGreen ();

146 }

147 }

148 }

149

150 public class BT_TrafficLightKeyboardDetection : BP.BThread {

151

152 public BT_TrafficLightKeyboardDetection (){

153

154 }

155

156 public override IEnumerable <BP.RWB > run()

157 {

158 yield return new BP.RWB {

159 Requests = new List <BP.Events.Event >() {

160 new EV_TrafficLightToggleRequest ()}};

161 yield return new BP.RWB { };

162 }

163 }

164

165 public class BT_TrafficLightBlockObjects : BP.BThread {

166

167

168 public BT_TrafficLightBlockObjects (){

169 }

170

171 public override IEnumerable <BP.RWB > run()

172 {

173 while(true)

174

175 {

176 if(TrafficLight.color== TrafficLight.red){

177 yield return new BP.RWB {

178 Waits = new List <BP.Events.Event >() {

179 new EV_NextFrame ()},

180 Prevents = TrafficLight.listofclosecars };

181 }

182 if(TrafficLight.color== TrafficLight.green){

183 yield return new BP.RWB {

184 Waits = new List <BP.Events.Event >() {

185 new EV_NextFrame ()},

186 Prevents = new List <BP.Events.Event >() {

187 new EV_CrossTrafficLight ()} };

188 }

189 if(TrafficLight.color== TrafficLight.orange ){

190 List <BP.Events.Event > list =

191 new List <BP.Events.Event >() {

192 new EV_CrossTrafficLight ()};
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193 list.AddRange(TrafficLight.listofclosecars );

194 yield return new BP.RWB {

195 Waits = new List <BP.Events.Event >() {

196 new EV_NextFrame ()},

197 Prevents = list};

198 }

199 }

200 }

201 }

202

203 public class BT_Car_WarningSigns : BP.BThread {

204

205 int carID;

206

207 public BT_Car_WarningSigns(int car_id ){

208 carID = car_id;

209 }

210

211 public override IEnumerable <BP.RWB > run()

212 {

213 while(true)

214 {

215 yield return new BP.RWB {

216 Waits = new List <BP.Events.Event >() {

217 new EV_Car_WarningSignToggle(carID )}};

218 yield return new BP.RWB {

219 Waits = new List <BP.Events.Event >() {

220 new EV_Car_WarningSignToggle(carID)},

221 Prevents = new List <BP.Events.Event >() {

222 new EV_Car_DriveRequest(carID )}};

223 }

224 }

225 }

226

227 public class BT_Car_WarningSignsOff : BP.BThread {

228

229 int carID;

230

231 public BT_Car_WarningSignsOff(int car_id ){

232 carID = car_id;

233 }

234

235 public override IEnumerable <BP.RWB > run()

236 {

237 yield return new BP.RWB {

238 Requests = new List <BP.Events.Event >() {

239 new EV_Car_WarningSignToggle(carID )}};

240 yield return new BP.RWB { };

241 }

242 }

243

244 public class BT_CrossTrafficLight : BP.BThread {

245

246 public BT_CrossTrafficLight (){
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247

248 }

249

250 public override IEnumerable <BP.RWB > run()

251 {

252 while(true)

253 {

254 yield return new BP.RWB {

255 Requests = new List <BP.Events.Event >() {

256 new EV_CrossTrafficLight ()}};

257 foreach(Pedestrian p in GameLogic.pedestrians ){

258 p.crossTheStreet ();

259 }

260 yield return new BP.RWB {

261 Waits = new List <BP.Events.Event >() {

262 new EV_NextFrame ()}};

263 }

264 }

265 }

266

267 public class BT_NextFrame : BP.BThread {

268

269

270 public BT_NextFrame (){

271 }

272

273 public override IEnumerable <BP.RWB > run()

274 {

275 yield return new BP.RWB {

276 Requests = new List <BP.Events.Event >() {

277 new EV_NextFrame ()}};

278 yield return new BP.RWB { };

279 }

280 }
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